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Why contact?

Symplectic manifold is the natural arena for conservative physics; i.e. the value of the
function that geometrically induces the dynamics, the Hamiltonian function, does not change
during the motion.

What happens when the energy is not conserved?

For example when dissipation is present: viscous drag, electrical circuit, thermodynamics,
...
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Contact Manifolds

Definition (Contact Manifold)
A couple (M,∆), where:

M is an odd-dimensional manifold,
∆ ⊂ TM is a distribution of codimension 1, maximally non-integrable, [∆,∆] * ∆

Definition (Exact Contact Manifold)
A couple (M, η), where:

M is an odd-dimensional manifold,
η ∈ Ω1(M) a 1-form, such that: η ∧ (dη)n 6= 0.

Proposition (Reeb vector field)
On (M,η) there exist an unique vector field R that satisfies: η(R) = 1 and dη(R , ·) = 0.
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Contact Transformations

Definition
A diffeomorphism ψ : (M, η) → (N, α) is a contactomorphism or a contact transformation if

ψ∗α = f η, f : M → R0

Furthermore, if f := 1, the diffeomorphism ψ is called exact contactomorphism.

Definition
An infinitesimal contactomorphism on (M, η) is a vector field W such that:

LW η = gW η, gW : M → R.

If gW := 0, W is called strict infinitesimal contactomorphism.
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Contact Hamiltonian systems

Definition (contact Hamiltonian System)
A triple (M, η,H) is called a contact Hamiltonian system, where (M, η) is an (exact)
contact manifold, and H : M → R a smooth real function. The contact Hamiltonian ODE is
defined by:

ẋ = XH(x);

where the Hamiltonian vector field XH satisfies:

η(XH) = −H dη(XH, ·) = dH− R(H)η.

Remark:
LXHη = d (−H) + (dH− R(H)η) = −R(H)η.

Hamiltonian vector fields are contactomorphism.
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Darboux Theorem in contact (Hamiltonian systems)
In Darboux coordinates x = (Qi ,Pi ,S) where the contact form takes the form:

η = dS − PidQi dη = dQi ∧ dPi

the equations of motion are: 

Q̇i =
∂H
∂Pi

Ṗi = − ∂H
∂Qi

− Pi
∂H
∂S

Ṡi = Pi
∂H
∂Pi

−H

Proposition
The evolution of the Hamiltonian function under its own flow is given by:

Ḣ = −HR(H).
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Some useful results

Proposition
The commutation of two Hamiltonian vector fields on the same contact manifold (M, η) is
again a contact Hamiltonian vector field.
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Jacobi Brackets,

On a contact manifold (M, η) is naturally endowed with a Jacobi structure (local Lie algebra
in Kirillov sense). Therefore, η induces a map:

{·, ·}η : C∞(M)× C∞(M) → C∞(M)

that is bi-linear, and satisfies the Jacobi identity but it does not satisfy the Leibniz rule. The
definition depends on the Reeb vector field and the skew-symmetric vector field Λ(·, ·).

Proposition
The Jacobi brackets of two Hamiltonian functions:

[Xf ,Xg ] = −X{f ,g}η
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Jacobi Brackets, ... in coordinates

Jacobi brackets can be expressed in the following way:

{f , g}η = Xg f + f R(g) = −Xf g − g R(f ).

that means in coordinates:

{f , g}ds−pdq =

(
f ∂g
∂s − g ∂f

∂s

)
+ p

(
∂f
∂s
∂g
∂p − ∂f

∂p
∂g
∂s

)
+

(
∂f
∂q

∂g
∂p − ∂f

∂p
∂g
∂q

)
.
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Jacobi Brackets, and conserved quantities

Definition
Let (M, η,H) a contact Hamiltonian system. If f : M → R has a vanishing Jacobi bracket
with H, i.e.

{f ,H}η = 0

then we say that f is in involution with H.

Proposition
If two functions f , g on a contact manifold (M, η) commute their evolution satisfies:

Xf g = −gR(f ).

Their ratio f /g is conserved, but also any function of degree 0 in f and g is conserved.
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Numerical integrators
� Splitting Numerical Integrators

H =
∑

i hi .

For each Xhi exist and can be computed its flows Φt
hi
(x0)

We can construct by the composition:

S2(τ) :M → M

x0 7→ ◦n−1
i=1

(
Φ

τ
2
hn−i

)
◦ Φτ

n ◦
(
◦n

i=1Φ
τ
2
hi

)
(x0)

⇒[Bravetti-Seri-Vermeeren-Z 2020] the composition of the flows Φt
hi

is a
contactomorphism, so there exist a modified Hamiltonian h̃τ

|H(Q,P ,S)− h̃τ (Q,P ,S)| ∼ O(τ2).

� Lagrangian Numerical integrators
� Neural Network
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Numerical integrators

� Splitting Numerical Integrators
� Lagrangian Numerical integrators The variational integrator relies on the Herglotz

variational principle:

S(t) =
∫ t

0
P ∂H
∂P −H(Q,P ,S)︸ ︷︷ ︸

L(Q,P,S)

dt

and the discretization of the Lagrangian.

� Neural Network
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Numerical integrators

� Splitting Numerical Integrators
� Lagrangian Numerical integrators
� Neural Network It learns a parametric function:

Θ : M × Rn → R,

that is equivalent to fixing n parameters to approximate some chosen trajectories.
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Neural Network

The aim is to learn the Hamiltonian function from trajectories in the phase space
(qi(t), pi(t), s(t)). So we want to learn a parametric map (the set of parameters {θi} is fixed):

Θ{θi} : M → R,

which minimizes the following loss function:

L(Q,P ,S) := ‖ẋ − XΘ{θi}
‖2(Q,P ,S)

where ẋ(Q,P ,S) is the “velocity” field on the contact phase space, and XΘ{θi}
is the

Hamiltonian vector field induced by Θ{θi}(Q,P ,S), that is

XΘ =
∂Θ

∂P
∂

∂Q −
(
∂Θ

∂Q + P ∂Θ
∂S

)
∂

∂P +

(
P ∂Θ
∂P −Θ

)
∂

∂S
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Neural Network

Input
𝑥in = 𝑥(0)

Hidden Layer 1
𝑥(1) = 𝜎1 (∑ 𝜔(1)

𝑖 𝑗𝑥
(0)
𝑗 + 𝑏(1))

Hidden Layer 2
𝑥(2) = 𝜎2 (∑ 𝜔(2)

𝑖 𝑗𝑥
(1)
𝑗 + 𝑏(2))

Output
𝑥(3) = 𝑥𝑜𝑢𝑡 = 𝜎3 (∑ 𝜔(3)

𝑖 𝑗𝑥
(2)
𝑗 + 𝑏(3))

� The set of parameters {θi} is divided into groups ωi that correspond to the layers.

� The non-linearity function, σi , is arctan(x).
� The training data set is generated by two different approaches: IVP-integrator

(Runge-Kutta) 4(5) and contact splitting integrators.
� The training of the neural network is performed through an Adam-Optimizer.
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Neural Network: Results

H =
P2

2 +
Q2

2 + γS.
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Neural Network: Results

H =
P2

2 +
Q2

2 + γS.
Q̇ = P
Ṗ = −Q − γP

Ṡ =
P2

2 − Q2

2 − γS
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Neural Network: Results
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Neural Network: Results
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Neural Network: Results

Ḣ = −∂H
∂S H

so

H(t) = H0e−γt ⇒ log(H)(t) ∼ −γt
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Neural Network: Results
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Neural Network: Results

H =
p2

2 +
q2

2 +
s2

2 − 1.
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Neural Network: Results

H =
p2
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q2
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q̇ = p
ṗ = −q − ps

ṡ =
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Neural Network: Results
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Neural Network: Results

2 1 0 1 2
q

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

p

2 1 0 1 2
p

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

s

2 1 0 1 2
q

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

s

hnn
baseline
hnn-hamtrain

Federico Zadra (Bernoulli Institute, RUG) Aspects of contact Hamiltonian systems 2nd October 2023 17 / 30



Part 2: Symmetries
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Symmetries

Dynamical symmetry[7] is a vector field Y ∈ X(M)

η([XH,Y ]) = 0.

Cartan Symmetry[7] is a vector field Z ∈ X(M) such that

LZη = aη + dg Z(H) = aH + gR(H),

for two functions a, g ∈ C∞(M).
Dynamical similarity[9] is a vector field W ∈ X(M) such that

[W ,XH] = φW XH,

for a smooth function φW .
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Hamiltonian decomposition

We consider a vector field ξ ∈ X(M). We consider:

fξ = −η(ξ)

Then we can consider the ”rest”:

ξ = Xfξ + δξ︸︷︷︸
η(δξ)=0 ⇒ δξ∈ker η

Federico Zadra (Bernoulli Institute, RUG) Aspects of contact Hamiltonian systems 2nd October 2023 20 / 30



Hamiltonian decomposition

We consider a vector field ξ ∈ X(M). We consider:

fξ = −η(ξ) =⇒ Xfξ .

Then we can consider the ”rest”:

ξ = Xfξ + δξ︸︷︷︸
η(δξ)=0 ⇒ δξ∈ker η

Federico Zadra (Bernoulli Institute, RUG) Aspects of contact Hamiltonian systems 2nd October 2023 20 / 30



Hamiltonian decomposition

We consider a vector field ξ ∈ X(M). We consider:

fξ = −η(ξ) =⇒ Xfξ .

Then we can consider the ”rest”:

ξ = Xfξ + δξ︸︷︷︸
η(δξ)=0 ⇒ δξ∈ker η

Federico Zadra (Bernoulli Institute, RUG) Aspects of contact Hamiltonian systems 2nd October 2023 20 / 30



Why Hamiltonian decomposition?

Commutation relations define the symmetries. We look for properties that involve the use of a
commutator.
Remarkable and well-known results:

Proposition: [Xf ,Xg ] = X{g,f }η .

Proposition: [Xf , (ker η)] ⊂ ker η.
Proposition[4]: On an (exact) contact manifold (M, η) the Hamiltonian decomposition is
unique.
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Why Hamiltonian decomposition?

Commutation relations define the symmetries. We look for properties that involve the use of a
commutator.
Remarkable and well-known results:

Proposition: [Xf ,Xg ] = X{g,f }η .
Proposition: [Xf , (ker η)] ⊂ ker η.

Proof. Consider a CHS (M, η,H), then

i[Xf ,h]η = LXf ihη − ihLXf η = 0.

Proposition[4]: On an (exact) contact manifold (M, η) the Hamiltonian decomposition is
unique.
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Dynamical symmetries

Dynamical symmetry[7] is a vector field Y ∈ X(M)

η([XH,Y ]) = 0.

Proposition ([4)
] Let (M, η,H) be a contact Hamiltonian system, and Y ∈ X(M). Then Y is a dynamical
symmetry for (M, η,H) if and only if it has Hamiltonian decomposition

Y = XφY + δY ,

where {φY ,H}η = 0.
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Cartan symmetries

Cartan Symmetry[7] is a vector field Z ∈ X(M) such that

LZη = aη + dg Z(H) = aH+ gR(H),

Proposition ([4])
Let us consider a contact Hamiltonian system (M, η,H), and Z ∈ X(M). Then Z is a Cartan
symmetry if and only if it has Hamiltonian decomposition of the form

Z = XfZ + Λ(dg , ·),

where Λ is a skew-bivector field defining the natural Jacobi structure on (M, η), such that
{fZ + g ,H}η = 0.
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Dynamical similarity

Dynamical similarity[9] is a vector field W ∈ X(M) such that

[W ,XH] = φW XH,

for a smooth function φW .

Federico Zadra (Bernoulli Institute, RUG) Aspects of contact Hamiltonian systems 2nd October 2023 24 / 30



Dynamical similarity

Dynamical similarity[9] is a vector field W ∈ X(M) such that

[W ,XH] = φW XH,

for a smooth function φW .

Proposition ([4])
Let W be a dynamical similarity of (M, η,H), then {fW ,H}η = −φWH.
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Dynamical similarity

Dynamical similarity[9] is a vector field W ∈ X(M) such that

[W ,XH] = φW XH,

for a smooth function φW .

Proposition ([4])
Let W be a dynamical similarity of (M, η,H), then {fW ,H}η = −φWH.

Proposition ([4])
Let W a dynamical similarity of the contact Hamiltonian system (M, η,H). Then

φW = XH

(
−fW
H

)
.
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Dynamical similarity

Dynamical similarity[9] is a vector field W ∈ X(M) such that

[W ,XH] = φW XH,

for a smooth function φW .

Proposition ([4])
Let W be a dynamical similarity of the contact Hamiltonian system (M, η,H). If κ is a
constant of motion of XH, then also W (κ) is a constant of motion of XH.
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Thank you for
your attention
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