
Oscillations: swings and

vibrations from a

mathematical viewpoint

Henk Broer, Marcello Seri and Floris Takens

March 26, 2024

*Bernoulli Institute for Mathematics, Computer Science and Artificial In-
telligence, University of Groningen





The same equations have the same solutions.

Richard P. Feynman





Contents

1. It oscillates forever 1
1.1. The pendulum, the spring and some other examples . 2

1.1.1. The pendulum . . . . . . . . . . . . . . . . . . . 2
1.1.2. The spring . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3. The U-pipe . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4. The L-C circuit . . . . . . . . . . . . . . . . . . . 8
1.1.5. On modeling . . . . . . . . . . . . . . . . . . . . . 10

1.2. The pendulum as a spring: linearization . . . . . . . . 11
1.3. The phase plane and the line element field . . . . . . . 13

1.3.1. The phase plane . . . . . . . . . . . . . . . . . . . 13
1.3.2. Line element fields . . . . . . . . . . . . . . . . . 23

1.4. Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1. Kinetic and potential energy . . . . . . . . . . . 25
1.4.2. Conservation of energy . . . . . . . . . . . . . . 27
1.4.3. Energy conservation and the phase portrait . . 29

1.5. Period of oscillation . . . . . . . . . . . . . . . . . . . . 32
1.5.1. A general expression for the period of oscillation 35
1.5.2. Spring and pendulum . . . . . . . . . . . . . . . 36

1.6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6.1. The vertical spring . . . . . . . . . . . . . . . . . 38
1.6.2. The horizontal pendulum . . . . . . . . . . . . . 39
1.6.3. Symmetries of the line elements field . . . . . . 39
1.6.4. Ellipses and time rescalings on the spring . . . 40
1.6.5. Amplitudes and energies . . . . . . . . . . . . . 40
1.6.6. Phase portraits . . . . . . . . . . . . . . . . . . . 41
1.6.7. The cycloid . . . . . . . . . . . . . . . . . . . . . 41

v



Contents

1.6.8. Huygens’ isochronous and tautochronous curve 43
1.6.9. Period and area . . . . . . . . . . . . . . . . . . . 43
1.6.10. Elliptic integrals . . . . . . . . . . . . . . . . . . . 44
1.6.11. The potential energy of the pendulum . . . . . 45

2. It oscillates in resonance 47
2.1. Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1. A friction directly proportional to the velocity . 48
2.1.2. The R-L-C circuit . . . . . . . . . . . . . . . . . . 50

2.2. Loss of energy due to friction . . . . . . . . . . . . . . . 52
2.2.1. When the undamped motion oscillates . . . . . 53
2.2.2. The general case . . . . . . . . . . . . . . . . . . 57

2.3. The damped harmonic oscillator with periodic forc-
ing, resonance . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.1. “The” solution in the harmonic case . . . . . . . 62
2.3.2. Resonance in harmonic oscillators with peri-

odic forcing . . . . . . . . . . . . . . . . . . . . . 64
2.4. Resonance in non-harmonic oscillators with periodic

forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.1. Parametric resonance . . . . . . . . . . . . . . . 67
2.4.2. Non-linear modeling . . . . . . . . . . . . . . . . 69

2.5. The stabilization of oscillations . . . . . . . . . . . . . . 70
2.5.1. First attempt . . . . . . . . . . . . . . . . . . . . . 72
2.5.2. Second attempt . . . . . . . . . . . . . . . . . . . 73
2.5.3. Third attempt . . . . . . . . . . . . . . . . . . . . 73

2.6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.6.1. Negative damping . . . . . . . . . . . . . . . . . 75
2.6.2. Tossing a fair coin . . . . . . . . . . . . . . . . . . 75
2.6.3. A “controlled” oscillator . . . . . . . . . . . . . . 75
2.6.4. A damped oscillator with forcing . . . . . . . . . 76
2.6.5. The Van der Pol–Liénard differential equation . 77

3. Oscillations in daily life 79
3.1. Two further examples of oscillators . . . . . . . . . . . 82

3.1.1. A plank bridge . . . . . . . . . . . . . . . . . . . . 83

vi



Contents

3.1.2. Rolling of a ship . . . . . . . . . . . . . . . . . . . 83
3.2. Coupling finitely many oscillations . . . . . . . . . . . 85

3.2.1. Lissajous figures . . . . . . . . . . . . . . . . . . 86
3.2.2. Beats . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.3. More than two degrees of freedom . . . . . . . . 97

3.3. Vibrations of continuous media . . . . . . . . . . . . . 99
3.3.1. Discretizing the continuum . . . . . . . . . . . . 99
3.3.2. Strings, beams, etc. . . . . . . . . . . . . . . . . . 114
3.3.3. Other vibrational phenomena . . . . . . . . . . 118

3.4. Relaxation oscillations . . . . . . . . . . . . . . . . . . . 121
3.5. An exercise on Hooke’s n–body problem . . . . . . . . 125

A. Johann Bernoulli’s brachistochrone 129
A.1. Geometric optics . . . . . . . . . . . . . . . . . . . . . . 131

A.1.1. Fermat implies Snell . . . . . . . . . . . . . . . . 132
A.1.2. A conservation law . . . . . . . . . . . . . . . . . 134

A.2. The brachistochrone as a light ray . . . . . . . . . . . . 136
A.3. Scholium . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B. Small oscillations and the Foucault problem 141
B.1. Beats revisited . . . . . . . . . . . . . . . . . . . . . . . . 142
B.2. The Foucault pendulum . . . . . . . . . . . . . . . . . . 146

B.2.1. The spherical pendulum . . . . . . . . . . . . . . 147
B.2.2. Small oscillations . . . . . . . . . . . . . . . . . . 149
B.2.3. Spherical precession . . . . . . . . . . . . . . . . 150

B.3. Scholium . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.4. One more Hookian problem . . . . . . . . . . . . . . . . 154

C. Chaos in periodically forced oscillators 155
C.1. The Hénon attractor . . . . . . . . . . . . . . . . . . . . 156

C.1.1. Iterating a map . . . . . . . . . . . . . . . . . . . 157
C.1.2. The Benedicks-Carleson Ansatz . . . . . . . . . 162

C.2. The stroboscopic map . . . . . . . . . . . . . . . . . . . 164
C.2.1. Determinism again . . . . . . . . . . . . . . . . . 164
C.2.2. The stroboscopic phase portrait . . . . . . . . . 166

vii



Contents

C.2.3. Hénon-like strange attractors . . . . . . . . . . . 168
C.3. Scholium . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.3.1. Towards an understanding of chaos . . . . . . . 170
C.3.2. Chaotic dynamics without damping . . . . . . . 173

D. More on resonance 177
D.1. Huygens’ clocks . . . . . . . . . . . . . . . . . . . . . . . 180
D.2. Arnold resonance tongues and fractal geometry . . . . 181
D.3. A theoretical digression into circle maps . . . . . . . . 182

D.3.1. Denjoy Theory . . . . . . . . . . . . . . . . . . . 182
D.3.2. Kolmogorov-Arnold-Moser (KAM) . . . . . . . . 185
D.3.3. The Arnold family of circle maps . . . . . . . . . 187
D.3.4. A second digression on topology and measure

theory . . . . . . . . . . . . . . . . . . . . . . . . . 190
D.3.5. Back to Huygens’ clocks . . . . . . . . . . . . . . 191

D.4. Parametric resonance: Mathieu’s equation and the like 192
D.5. Scholium . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.5.1. Quasiperiodic Mathieu versus Schrödinger . . . 197
D.5.2. Celestial resonance . . . . . . . . . . . . . . . . . 203
D.5.3. A final exercise on Kepler’s third law . . . . . . . 209

E. Solutions of selected exercises 213
E.1. Exercises from Section 1.6 . . . . . . . . . . . . . . . . . 214

E.1.1. Exercise 1.6.1: The vertical spring . . . . . . . . 214
E.1.2. Exercise 1.6.2: The horizontal pendulum . . . . 214
E.1.3. Exercise 1.6.3: Symmetries of the line element

field . . . . . . . . . . . . . . . . . . . . . . . . . . 215
E.1.4. Exercise 1.6.4: Ellipses and time rescalings on

the spring . . . . . . . . . . . . . . . . . . . . . . 216
E.1.5. Exercise 1.6.5: Energies and amplitudes . . . . . 218
E.1.6. Exercise 1.6.6: Phase portraits . . . . . . . . . . 219
E.1.7. Exercise 1.6.7: The cycloid . . . . . . . . . . . . . 221
E.1.8. Exercise 1.6.8: Huygens’ isochronous and

tautochronous curve . . . . . . . . . . . . . . . . 222
E.1.9. Exercise 1.6.9: Period and area . . . . . . . . . . 222

viii



Contents

E.1.10.Exercise 1.6.10: Elliptic integrals . . . . . . . . . 223
E.1.11.Exercise 1.6.11: The potential energy of the pen-

dulum . . . . . . . . . . . . . . . . . . . . . . . . 224
E.2. Exercises from Section 2.6 . . . . . . . . . . . . . . . . . 225

E.2.1. Exercise 2.6.1: Negative damping . . . . . . . . . 225
E.2.2. Exercise 2.6.2: Tossing a fair coin . . . . . . . . . 226
E.2.3. Exercise 2.6.3: A “controlled” oscillator . . . . . 228
E.2.4. Exercise 2.6.4: A damped oscillator with forcing 229
E.2.5. Exercise 2.6.5: The Van der Pol-Liénard differ-

ential equation . . . . . . . . . . . . . . . . . . . 230
E.3. Exercise from Chapter 3: On Hooke’s n–body problem 232
E.4. Exercise from Appendix B: One more Hookian problem 234
E.5. Exercise from Appendix D: On Kepler’s third law . . . . 236

ix





Preface

xi



Contents

The idea for this book comes from the syllabus of a course for high
school teachers held in Groningen in the 1980s. At the time dif-
ferential equations were included in the school curriculum and a
mathematical treatment of oscillations was well in reach of the au-
dience. Since then, the syllabus evolved and has been used both by
master’s and graduate students at the University of Groningen and,
a few times, for didactical projects at secondary schools.

As in the original syllabus, in the book we will explore oscillations
guided by the works of Christiaan Huygens on the pendulum clock
and on resonance phenomena. In the present version, we revised
the material with fresh eyes and included appendices on chaos and
resonances, subjects that have developed greatly since the 1980s.
Among other things, we discussed celestial resonances and gave a
brief excursion into quantum physics.

We further added an appendix on Johann Bernoulli’s brachistochro-
ne, which happens to be the same cycloid that Huygens made such
extensive use of. This provides one of the connections to Gronin-
gen, where Bernoulli lived and worked between 1695 and 1705.

Another appendix deals with small oscillations, among other things
applied to the Foucault experiment to illustrate the rotation of the
earth. Here we will discuss spherical precession, a phenomenon
that complicates the Foucault experiment, and briefly mention the
role played on this by the later Nobel Prize laureate Kamerlingh Onnes
during his doctoral studies in Groningen.

In writing this book, we aimed the main body of text at bachelor and
master science students, as well as at high school teachers and their
teacher trainers. Throughout the main text we assume a high school
background, including some knowledge of basic trigonometry and
of elementary differential and integral calculus. Some of the appen-
dices require a broader mathematical background and are meant as
an introduction to more advanced topics that serve as an inspira-
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tion to the interested reader. Here we lean on the rich bibliography
at the end of the book and also consider these appendices as an in-
vitation to this bibliography. We hope that that high school teach-
ers, as well as their teacher trainers, and university professors can
find material in the book for all kinds of projects, seminars, presen-
tations, etc.

Since Floris Takens had a profound influence on the original con-
tents, and since he played a major role in the later developments,
we found it appropriate to add his name posthumously as a co-
author.

First of all, we thank Jan Epema and the late Max Kuipers for their
help in preparing the original syllabus. We also thank Hans Beijers,
Aernout van Enter, George Huitema, Francesco Paparelli and Fer-
dinand Verhulst for their meticulous reading and for many useful
comments. And we thank Bernd Krauskopf for his help with Ap-
pendix C and Dzemilia Sero for her help in refining the presentation
in some parts of the manuscript.

Henk Broer and Marcello Seri
Groningen, Summer 2023

xiii





Contents

xv





Preamble: oscillations and

mathematics

xvii



Contents

At the time of the ancient Greeks, geometry, arithmetic, and algebra
were already playing a leading role in mathematics and astronomy
[135, 156]. We have to wait until the 16th and 17th centuries for in-
finitesimal considerations to seriously enter the picture, in the end
leading to the differential and integral calculus as we know it today.
The development of these new methods went hand in hand with
gaining astonishing new insights in mechanics and optics. These
advances led to what we nowadays call classical mechanics and ge-
ometric optics, and marked the beginning of the scientific revolu-
tion.

Classical mechanics studies phenomena of motion, e.g., all kinds of
vibrations and oscillations. Two particular examples are the rotat-
ing and oscillatory motions of the planets and moons of our solar
system, the study of which is central in celestial mechanics. Both
examples are governed by the same principles.

Proper celestial observations started alongside the introduction of
telescopes, with the effect of bridging optics and mechanics. Al-
though these subjects seem far apart, we must realize that precise
celestial observations also need precise clocks and such clocks re-
quire oscillating devices to function, like a regularly moving pendu-
lum or a vibrating balance spring.

Navigation on the open sea

Travel across deserts and seas has been a prime motivation for these
developments. Indeed, from early on, some knowledge of celes-
tial phenomena and the corresponding timetables have been indis-
pensable for determining the travelers’ position on earth and the
direction to travel in. And when ships no longer stayed close to the
coast, navigation became an increasingly difficult problem. Indeed,
how to determine one’s position on the open sea? Nowadays with
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the Global Positioning System (GPS) this seems a piece of cake, but
at those times it surely was a big issue.

Determining the latitude on the Northern
Hemisphere is relatively easy. The North Star,
or Polaris, is an almost fixed point in the sky
very close to the northern celestial pole. With
the help of a sextant one can, at least in prin-
ciple, determine the angle between the North Star and the horizon:
this angle is exactly the northern latitude of your position, see the
figure on the side.

The determination of the longitude, however, is a quite different
matter [144]. For this, one needs a clock that keeps track of a ref-
erence time, say, e.g., the Greenwich time. Sailors on board, then,
can determine noon local time by “shooting the sun”. If the time
difference with Greenwich is T hours, then the longitude equals

T £ 360
24

= 15T degrees.

So the real problem is to have a good clock on board that is syn-
chronous with Greenwich. The development of such a clock tou-
ches on one of the themes of this book, also compare with [32].

Huygens and some other names

A few of the names that were important for the era at hand are Galileo
Galilei (1564-1642), Johannes Kepler (1571-1630), René Descartes
(1596-1650), Christiaan Huygens (1629-1695), Isaac Newton (1643-
1727), Gottfried Wilhelm Leibniz (1646-1716) and Johann Bernoulli
(1667-1748).

Next to the classical mathematics as inherited from the ancient Greeks,
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a new method was being developed where infinitesimal considera-
tions began to play a serious role. Newton, Leibniz, and Bernoulli
were setting the foundations that eventually led to the differential
and integral calculus as this is known to us now. Among other things,
this led to a full mathematical understanding of Kepler’s work on the
solar system.

Galileo laid the mathematical foundation of this development, by
refining the telescope and by deducing the first kinetic theory of ce-
lestial bodies based on a principle of relativity and heliocentrism.
This took place half a century before calculus was born.

Remark 1. The art of lens grinding had already been practiced for a
couple of centuries and, in order to construct and improve on their
telescopes, both Galileo and Huygens also took part in this.

The torch was carried further by Huygens in his groundbreaking
Horologium Oscilatorium [92, 1] on the pendulum clock, which forms
a major inspiration for the present book. He used intricate infinites-
imal considerations with amazing results, but only at the end of his
life, at the instigation of Leibniz, he developed plans to learn ’real’
calculus.

Huygens’ lifetime fell in the Dutch Golden Age which roughly runs
from 1588 to 1672. For general background see Israel [93]. This was
a period of great wealth for the Republic of the United Netherlands.
The Dutch East-India Company (VOC, Vereenigde Oost-Indische Com-
pagnie) caused trade to expand quickly, which attracted immigrants
and stimulated the growth of the main cities and ports. In this age
the Dutch trade, industry, science, and art as well as the military
were among the most acclaimed in the world.

Christiaan Huygens was born as the son of Constantijn Huygens
(1596-1687), a well-known poet, composer, and diplomat in which
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capacity he was secretary to the Princes of Orange Frederik Hendrik
and Willem II. Christiaan as a young man already was outstand-
ing in his ability to solve problems in mathematics and mechan-
ics. In 1644 he took up studies in mathematics and law, at first
at Leiden University, and later in Breda. Under the influence of
the Princes of Orange Maurits and especially the more enlightened
Frederik Hendrik, these cities had an excellent capacity for teaching
and, thanks to intellectual freedom, also for science. Many scien-
tists and philosophers from abroad fled, looking for shelter in the
Netherlands, which contributed to a highly stimulating and intel-
lectual atmosphere.

Christiaan Huygens was both a scientist and an engineer, compare
with [2, 3, 23, 57, 146, 154, 164]. His more theoretical work ranges
from mechanics and optics to astronomy; we already mentioned
his Horologium Oscillatorium. In particular, he also wrote about
Saturn’s rings. Concerning his practical work, he invented and im-
proved various instruments like lenses, microscopes, telescopes, and
clocks. Huygens had a great international reputation: from 1663 on
he was a Fellow of the Royal Society in London and between 1666
and 1683 he was appointed Directeur de Récherche at the Académie
des Sciences in Paris by King Louis XIV, being the first scientist in
this prestigious position.

Remark 2. René Descartes was an influential French philosopher,
scientist, and mathematician. He spent much of his working life in
the Dutch Republic. He is credited as the father of analytic geom-
etry, used in the discovery of the infinitesimal calculus. Descartes
was also one of the key figures in the scientific revolution.
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A few problems of Huygens

Galileo had already observed that the period of oscillation of a pen-
dulum is independent of its mass and that, for small deflections,
this period is approximately independent of the amplitude. These
discoveries inspired a closer investigation of the pendulum motion.
So Huygens, both for their practical applications and for a deeper
understanding of these phenomena, posed the following problems.

1. What is generally understood as a
pendulum is a mathematical ideal of
a ’real’ pendulum. For instance, in
the mathematical pendulum, we as-
sume that all mass is concentrated in
one point. What should be the length
` of an ideal pendulum to ensure that it moves exactly as the
’real’ one?

2. It was already known that the period of oscillation of a pen-
dulum is not constant but increases with the amplitude. But
what is the exact period of oscillation of a pendulum as a func-
tion of its length and especially of the amplitude of oscilla-
tion?

3. The motion of a pendulum mass can be thought of as that of
a bead that slides without friction along a circular wire un-
der the influence of constant gravity. One may well ask then
whether there exists a wire profile along which the period of
oscillation is independent of the amplitude?

The profile Huygens was looking for now is known as the iso-
chronous curve.
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The first and third of these problems were rather nasty in Huygens’
time and contributed to motivating the further development of cal-
culus. Since then they have become rather simple exercises, as we
will see in Section 1.6. Indeed, from our approach it directly follows
that the isochronous curve, which is actually called cycloid, is also
the tautochronous curve along which the downtime of the bead is
the same from whatever height it drops. Due to Johann Bernoulli
we know that the curve is also brachistochrone: along this curve it
takes the shortest time for the bead to descend. In Appendix A we
shall see how intimately intertwined mathematics, mechanics and
optics are in Bernoulli’s solution.

The second problem turned out to be surprisingly more difficult.

Later developments

Since then, research on oscillations has continued steadily and ex-
panded. One direction of interest was the study of sound and light
as vibrational phenomena. A milestone in this development came
in the 19th century with the electromagnetic oscillations ensuing
from the theory of James Clerk Maxwell (1831-1879). All kinds of
new questions surfaced in the 20th century with the subsequent
development of electronics, a period often referred to as radio time.
One of the pioneers in this direction was the Dutch physicist Balthasar
van der Pol (1889-1959), a long-time member of the Philips Research
Laboratories in the city of Eindhoven.

The discipline of dynamical systems, which includes the study of
oscillators in networks of other dynamical agents, thrived on the
continuous stream of new challenges and has kept growing in com-
plexity over the last century. New phenomena that showed up were
multi- or quasiperiodicity and chaos. The advent of numerical meth-
ods and electronic computer further stimulated its development and
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the opportunities for mathematical exploration.

We touch on a few of these newer aspects in Appendices C and D.

Outline of what follows

We conclude this preamble with an outline of what follows. In Chap-
ter 1, It oscillates forever, we are led by the second and third prob-
lems of Huygens. We present the pendulum as an example of an
oscillator without friction and damping and deal with such oscilla-
tions in a geometric fashion. In Chapter 2, It oscillates in resonance,
external forces due to friction, damping, and forcing come into play.
By means of a number of mechanical and electronic examples, we
encounter the phenomenon of resonance. Chapter 3, Oscillations
in daily life, gives some examples of oscillations as they occur in a
string, in sound, water, etc. These phenomena have a more com-
plex nature, since apart from motion in time spatial configurations
like waves become important. All chapters are closed by a number
of exercises, whose solutions are sketched in Appendix E.

The book closes with a choice of appendices that may be of inter-
est to the reader, but where we did not shy away from using more
advanced mathematics. Appendix A is devoted to Johann Bernoul-
li’s brachistochrone problem, where mathematics, mechanics, and
optics are nicely intertwined. Appendix B, Small oscillations and
the Foucault problem, deals with the theory of small oscillations as
these occur in linearizations of coupled oscillators. As 19th cen-
tury application, we describe the Foucault experiment, designed
to demonstrate the rotation of the earth, and also reveal the phe-
nomenon of spherical precession which complicates this setup. Ap-
pendix C, Chaos in periodically forced oscillators, treats aspects of
the more recent chaos theory as this occurs in the present context.
Here we shall meet the partly experimental Benedicks-Carleson Ansatz
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which forms a structuring element. Appendix D, More on resonance,
expands Chapter 2 in various ways and discusses another problem
of Huygens concerning synchronization of weakly coupled pendu-
lum clocks as a leading example. It turns out that fractal sets form an
intrinsic component of the theory. The appendix concludes with an
excursion into mathematically related aspects of quantum physics
and a discussion of (part of) the extremely rich subject of celestial
resonances. The book closes with the aforementioned Appendix E,
Solutions of selected exercises.

Remark 3. The appendices all close with a scholium. Here we went
somewhat deeper, often referring to technical literature for the de-
tails. The reader may well regard such a scholium as an invitation
to this literature.

xxv





1. It oscillates forever
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1. It oscillates forever

In this chapter, we study the oscillatory motion of certain simple
physical systems. For now, we only consider motions without fric-
tion or damping. As we shall see, this means that the energy remains
preserved during the motion and that it just keeps oscillating. We
shall not delve to deep into the physical derivation of the mathe-
matical descriptions but instead provide some useful references for
the interested reader.

1.1. The pendulum, the spring and some
other examples

1.1.1. The pendulum

Fig. 1.1: Pendulum

The pendulum consists of a weight of mass
m attached to a rigid rod of length ` which
is suspended from a pivot. For simplic-
ity, we assume that the weight is a point
mass (or material point) and that the rod
is massless.

We assume that the motion occurs in a ver-
tical plane, under the influence of a con-
stant gravitational acceleration g . As we
know from elementary mechanics, the gravitational force acting on
the material point then is mg pointing in the downward direction.
This force can be decomposed into two components,

one parallel to the rod and one orthogonal to it, see Figure 1.1. The
rigidity of the rod keeps the point mass at a fixed distance from the
pivot, effectively cancelling the motion parallel to this. The remain-
ing orthogonal component is the force acting in the angular direc-

2



1.1. The pendulum, the spring and some other examples

tion. An exercise in planar geometry shows this component is given
by °mg sin x, where x denotes the angle between the rod and its
vertical equilibrium position, increasing from left to right.

The effect of this orthogonal component then is to pull the point
mass toward this vertical position.

So the point mass is constrained to move on a circular arc. If the
angle x is expressed in radians, the distance between the material
point and its equilibrium position along the circle is given by the
arclength `x.

It is our aim to describe the motion of the pendulum. Therefore we
need to find out how the angle x changes with respect to the time
t . In other words, the motion is going to be a function t 7! x(t ).
The relation between the force acting on a system and its motion is
provided by Newton’s well-known law

F = m a , (1.1)

where F denotes the force, m the mass of the material point, and
a its acceleration [118]. As said before, no motion takes place in
the radial direction, and therefore Newton’s law will only effect the
angle x. By definition, the acceleration is the rate of variation of the
velocity, which in turn is the rate of variation of the position. This
mathematically translates to

a = d2(`x)
dt 2 = `

d2x
dt 2 ,

where d2x
dt 2 denotes the second derivative of the function t 7! x(t ).

Replacing F and a in Newton’s law we obtain

°mg sin x = m`
d2x
dt 2

3



1. It oscillates forever

or, more concisely,
d2x
dt 2 =°g

`
sin x. (1.2)

Remark 4. 1. Note that we already tacitly used Newton’s law when
we said that the gravitational force equals mg , where g is the
constant gravitational acceleration.

2. Observe that in equation (1.2), which completely determines
the motion of the pendulum, the mass m plays no role. As
mentioned in the Preamble, the independence of the motion
of the pendulum from its mass m was already established ex-
perimentally by Galileo.

Newton himself used the notation ẋ and ẍ for differentiation. So

ẋ = dx
dt

and ẍ = d2x
dt 2 . (1.3)

Many authors have adopted this dot notation, and from now on we
will also do this.

1.1.2. The spring

A point mass with weight m is attached to a wall by a spring. We
assume that the point can only move on the horizontal plane, with-
out friction; in this way, its motion is not affected by gravity. Com-
pare Figure 1.2. Furthermore, we denote by x the distance of the
point mass from the equilibrium position: the position in which the
spring is neither compressed nor extended. As before, if we know x
as a function of time t , we can describe completely the motion of
the point mass.

4



1.1. The pendulum, the spring and some other examples

Fig. 1.2: Spring

The force acting on the point
mass in this new setting is the
restoring force of the spring, in
the opposite direction of the
deviation from the equilibrium.
According to Hooke’s law, this
force is proportional to the de-
viation

F =°kx ,

where the positive proportionality constant k, called the spring con-
stant, is a property of the spring in question. Newton’s law (1.1)
again provides the connection between force and motion:

°kx = mẍ ,

or

ẍ =° k
m

x . (1.4)

Remark 5. Here we kept gravity out of the game by assuming that
the motion was horizontal. In Exercise 1.6.1 we shall discuss what
happens when the spring is mounted vertically so that gravitation
also plays a role.

Equation (1.4) can be explicitly solved by

x(t ) = A cos(!t )+B sin(!t ) where !=

s
k
m

. (1.5)

Here A and B are arbitrary. We can just consider them as generic
constants and check that all the functions of the form (1.5) satisfy
the equation (1.4). The actual choice of A and B depends on the
position and velocity of the system at time t = 0, or at any other
fixed time for that matter. For convenience one normally uses t = 0.
Computing the velocity out of (1.5)

ẋ(t ) =°A! sin(!t )+B! cos(!t ) , (1.6)
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1. It oscillates forever

then using (1.5) and (1.6) we conclude

A = x(0) and B = 1
!

ẋ(0).

When taking, for instance, x(0) and ẋ(0) = dx
dt

ØØØ
t=0

both equal to 0,

the system remains at rest. Indeed, this implies A = B = 0 and by
(1.5) we find that x(t ) = 0 for all t .

It can be convenient to rewrite (1.5) in the more compact form

x(t ) = R cos(¡°!t ) , (1.7)

where R and¡have taken the role of A and B . Indeed, we can mimic
the previous computation of x(0) and ẋ(0) as

x(0) = R cos¡ and ẋ(0) = R!sin¡ .

Figure 1.3: Vibration (1.7) of the spring

To see where this is coming from, we can use the trigonometric for-
mula

cos(Æ+Ø) = cos(Æ)cos(Ø)° sin(Æ)sin(Ø)

6
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and rewrite (1.7) as

R cos(¡°!t ) = R cos(¡)cos(!t )+R sin(¡)sin(!t ) ,

which recovers equation (1.5) by taking A = R cos(¡) and B = R sin(¡).
Taking the square of A and B and adding them up, we can see that
R =

p
A2 +B 2.

Figure 1.3 shows the graph of the function (1.7). The maximal ex-
tension R is called the amplitude of the vibration or oscillation. As
one can also see from the picture, the vibration time or the period
of oscillation is 2º/! and thus its frequency, i.e., the number of os-
cillations per second, is !/2º. We call ! the circular or angular fre-
quency.

Remark 6. 1. The definition !=
p

k/m implies that ! is larger if
the mass is smaller and the spring stiffer: loose springs with
large masses are slower than stiff springs with small masses.
Does that reflect your experience?

2. The frequency of the oscillations is !/2º and therefore inde-
pendent of R.

1.1.3. The U-pipe

Fig. 1.4: U-pipe

In this example, we consider a U-shaped
pipe of constant section containing some
liquid, see Figure 1.4. The top of the pipe
is open, allowing the fluid to move freely.
By the principle of communicating vessels,
when the liquid is at rest, it will be at the
same height on both sides of the pipe.

7



1. It oscillates forever

Denote by x the height of displacement of the liquid from its equi-
librium position as depicted in Figure 1.4. Also in this case we aim
to apply Newton’s law (compare with [118, Book II, Sec. VIII, Propo-
sition XLIV and Theorem XXXV]) and describe the motion of the liq-
uid’s level.

While this model is a standard exercise in university physics courses,
the precise derivation of its equation of motion is out of the scope
of this book and we will only broadly sketch its main elements.

Let Ω be the specific weight of the liquid and O the surface area of
the horizontal cross-section of the pipe legs. Then, the restoring
force is given by the extra weight of the liquid in the column. If M
denotes the total mass of the liquid, then

M
d2x
dt 2 =°2OΩ g x .

We end up with an equation that is of the same type as (1.4) which
we just derived for the spring! Therefore, the motion is again of the
form (1.7) where the period is now given by

!2 = 2
OΩg

M
.

1.1.4. The L-C circuit

This final example comes from electricity theory. Suppose you have
a circuit with a capacitor of capacitance C and an inductor coil with
inductance L.

Fig. 1.5: L-C circuit

Don’t worry if you don’t know the physical
terminology in this derivation, you can get
an idea of the parts involved using a classi-
cal analogy of this system as a closed pipe

8
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with some liquid. The voltage is something that makes the liq-
uid flow, that is, induces a current, the capacitor is a little bucket
thet gets filled before letting the water flow through it and the in-
ductance is something that resists changes in the flow (whatever
this may mean). For the general physical background we refer
to [138].

A current with intensity I flows through the circuit, and we would
like to compute the function t 7! I (t ), describing how the intensity
changes over time, compare with Figure 1.5.

Let VL denote the voltage across the inductor and VC the voltage
across the capacitor. By Kirchoff ’s law, the sum of the voltages across
the elements in the circuit vanishes:

VC +VL = 0. (1.8)

Moreover, the constitutive relations for the circuit elements provide
the following additional equations:

I =C
dVC

dt
and VL = L

dI
dt

. (1.9)

Differentiating (1.8) gives

dVC

dt
+ dVL

dt
= 0, (1.10)

which, by (1.9), can be rewritten as

I
C

+L
d2I
dt 2 = 0,

or, again adopting the dot-notation (1.3),

Ï =° 1
C L

I . (1.11)

And again this equation is of the same type as equation (1.4), so the
motion is of the form (1.7) with !2 = 1/LC .
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1. It oscillates forever

Remark 7. A solution of (1.11), due to the way we derived its equa-
tion of motion, immediately solves (1.10) but it is not necessarily
satisfying Krikhoff’s Law (1.8).

This is not a problem here, since I = C dVC /dt implies that VC is
only determined up to an additive constant. Therefore it is always
possible to ensure that (1.8) holds true by adding an appropriate
constant.

1.1.5. On modeling

In the four examples of this section, we obtained equations of mo-
tion under assumptions that do not hold for real systems. To begin
with, in all the examples we neglected frictional forces: air resis-
tance, friction at the suspension points, electrical resistance, sur-
face friction in the pipes, etc. We will return to this in the next chap-
ter, in particular, we will see how friction will cause all oscillations
to die out.

Another problem in our hypotheses is the following. The pivot of
most pendulums cannot constrain them to only vertical oscillations.
Small perturbations can make the motion considerably more com-
plicated than the one described by equation (1.2). The same applies
when reducing material bodies with a physical dimension to point
masses.

However, all this does not diminish the usefulness of our consider-
ations. In general, one should understand this in the following way.
Our equations of motion describe idealized models of the physical
reality. They only describe reality up to a certain extent: by approx-
imation or by the representation of only certain aspects.
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1.2. The pendulum as a spring:
linearization

In Section 1.1.1, we derived the equation of motion for the ideal
pendulum (1.2) in a form that, to some extent, resembles the equa-
tion of motion of the spring (1.4):

ẍ =°!2 sin x, !=
q

g /` (pendulum),

ẍ =°!2x, !=
p

k/m (spring) .

However, while the latter admits solutions in closed form as (1.5) or
(1.7), this is not so straightforward for the former.

We now introduce an approximation of the pendulum equation as
follows. Observe that the line y = x at (x, y) = (0,0) is tangent to the
curve y = sin x, a statement also expressed by the famous limit

lim
x!0

sin x
x

= 1.

Figure 1.6: sin x º x near x = 0.

Therefore, in a small neighborhood of the origin, the function x 7!
sin x is well approximated by x 7! x. For x small, we can approxi-

11



1. It oscillates forever

mate the equation of motion of the pendulum (1.2) by

ẍ =°g
`

x.

Since this has the same form as the spring equation (1.4), its solu-
tions are given by (1.7):

x(t ) = R cos(¡°!t ) where !=
r

g
`

.

In other words, in the small oscillations approximation, the pendu-
lum oscillates like a spring with stiffness k = g /` and mass m = 1.

Remark 8. As already observed for the spring, we see that in the
small oscillations approximation all the solutions have the same fre-
quency

1
2º

r
g
`

,

independent of the amplitude of the oscillation.

This again corresponds to an experimental fact already known to
Galileo, as mentioned in the Preamble: the oscillation time of a pen-
dulum with small oscillations is approximately independent of their
amplitudes.

The technique presented in this section is called linearization: we
replaced the curve y = sin x by the straight line y = x. Such an ap-
proach is widely applied in practice to attack a large variety of prob-
lems. We will get back to this in Chapter 3 and in Appendix B.
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1.3. The phase plane and the line element
field

Until now we focused on two types of differential equations, namely

ẍ =°x and ẍ =°sin x, (1.12)

where, for simplicity, all the constants have been normalized to 1.
For the first type, we could easily compute all the solutions in de-
pendence of the time t , but for the second one we are not so lucky.
This motivated the development of other means to say something
about the behavior of the solutions, even without having an explicit
formula for them. As we will see, these means have a strong geo-
metric character.

1.3.1. The phase plane

Instead of considering a differential equation involving a second
derivative, we can reformulate the equations of motion as a system
of differential equations in which only first derivatives occur.

This is done by giving to ẋ its own name, say y , and considering it
as a new unknown function of the time t . We can then try to solve
for the two unknown functions x and y of t , where x(t ) denotes the
position of the point particle at time t and y(t ) its velocity at that
time. In the case of our examples in (1.12) we get

(
ẋ = y

ẏ =°x
and

(
ẋ = y

ẏ =°sin x
(1.13)

recalling the dot-notation (1.3). The top equation is always the same,
it is just the definition of velocity.
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1. It oscillates forever

We can further reduce these systems to a single differential equation
by eliminating time and taking y as a function of x. This can be done
with the help of the chain rule

dy
dt

= dy
dx

dx
dt

or, in other words,
dy
dx

=
dy
dt
dx
dt

.

This reduces the systems in (1.13) to

dy
dx

=°x
y

and
dy
dx

=°sin x
y

. (1.14)

Both of these equations can be solved explicitly in terms of integrals,
something that in the literature is often referred to as solution by
quadrature. To see this, it is convenient to think of dy

dx = lim ¢y
¢x as

the limit of the ratio of ‘infinitely small’ increments, here denoted
¢x and ¢y . Then (1.14) can be rewritten as

y¢y =°x¢x and y¢y =°sin x¢x ,

the limit form of which is

y dy =°x dx and y dy =°sin x dx ,

Summing both sides over the increments and taking the limit just
amounts to taking the usual integral. For the former this leads to

1
2 y2 =° 1

2 x2 +const.

where const is an integration constant. Equivalently we write

x2 + y2 =C , (1.15)

where C ∏ 0 is an arbitrary constant. For the latter we similarly get

y2 = 2cos x +C , (1.16)

where C ∏°2 is also arbitrary.
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The (x, y)-plane that contains the solution curves of a system of dif-
ferential equations like (1.13), is called the phase plane. Below, we
shall see that we are developing a method to describe situations that
are far more general than the pendulum or the spring.

Remark 9. 1. The small increments often are called infinitesi-
mals and the somewhat heuristic handling of these has lasted
for several centuries since the pioneering work of Newton and
Leibniz. We note that differential and integral calculus also
is named infinitesimal calculus. A proper, modern way to
deal with expressions as dx and dy as differential forms is
dealt with in courses on advanced (and multivariate) calcu-
lus [145].

2. Be that as it may, but here we have to mention that most peo-
ple keep thinking in terms of infinitesimals when doing con-
crete computations. For examples also see below, in particu-
lar see some of the exercises.

3. There also exists a formal way to deal with infinitely small and
with infinitely large numbers, as was developed by Robinson [131].

Determinism. The phase plane is an extremely important tool in
the study of physical phenomena such as oscillations. In general,
the solution curve (x(t ), y(t )) for systems like the one in (1.13) is
uniquely determined by the state (x(0), y(0)) at t = 0. In more mun-
dane terms, if for a system like the spring or the pendulum both the
position and the velocity at any given moment is known, then posi-
tion and velocity are determined for the entire future of the system.
This is a consequence of Newton’s law, which says that to describe
the motion of a system we only need to look at its acceleration

a = ẍ = ẏ ,
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and that higher derivatives of x with respect to t are not needed.
The mathematical background of this is the Theorem of Existence
and Uniqueness of solutions of first order differential equations [90]:
this theorem guarantees that once the initial positions and veloci-
ties are given, the equation of motion provided by Newton’s law has
a unique solution, which completely determines the future of the
system.

Remark 10. 1. You can check for yourself that such determinism
of the future does not apply if you only look at the position
x(0): x(t ) for t > 0 can not be determined by the mere position
x(0) alone.

2. In general we call systems of the form (1.13) deterministic: the
state at one moment determines the entire evolution. Here
it is important that the system is autonomous, i.e., that the
right-hand side does not explicitly depend on t . In Appendix C
we shall come back to this.

Motion in the phase plane. In the remainder of this section we
study the motion of systems in the phase plane. Here we have to
bear in mind, that the actual (physical) motion that we observe is
only the first component x(t ), i.e., the position. To visualize also the
velocity component y(t ), we would need the help of a more techni-
cal tool such as, for instance, the tachometer of a car.

The motion in the phase plane is propagated by the velocity vector

µ
ẋ
ẏ

∂
=

√
dx
dt
dy
dt

!

as a function of t . One of its components is the velocity of the mo-
tion

ẋ = y ,
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while the other is the acceleration of the same motion

ẏ = ẍ .

In the equations in (1.14) we have eliminated the time t . The advan-
tage of this is that we could easily determine the integral curves (or
solution curves, or trajectories) of those systems in the phase plane,
particularly in the cases (1.15) and (1.16). We have to realize that
this came with a cost: by eliminating time we have lost the time
parametrization of the integral curves.

In the next section, we will relate our observations with the conserva-
tion of energy. However, before moving on we look at our examples
one more time.

The spring

We start recalling the relevant equations:

ẍ =°x or

(
ẋ = y

ẏ =°x ,

with integral curves x2 + y2 = C , C ∏ 0, see (1.15). This is a family
of circles centered at the origin (x, y) = (0,0) and parametrized by C
(i.e., with radius

p
C ). What can we learn from this?

To begin with, each solution t 7! (x(t ), y(t )), of the system of differ-
ential equations moves in the (x, y)-plane along one of these circles.
Position and velocity at a particular moment, say at t = 0, uniquely
identify this circle: after all, only one circle in the family of circles
passes through the point (x(0), y(0)). But there is more.

We can also reconstruct how the point (x(t ), y(t )) moves along the
circle as a function of t , despite the fact that we have apparently
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1. It oscillates forever

Figure 1.7: Integral curves of the spring

eliminated time from our problem. The answer lies in the fact that
y = ẋ = dx

dt , so y(t ) is the x–component (i.e., the horizontal compo-
nent) of the velocity vector

µ
ẋ
ẏ

∂
=

√
d x
d t
d y
d t

!

at time t , and that the velocity vector has to be tangent to the circle,
thereby completely fixing this velocity vector.

To illustrate this, in Figure 1.8 we have fixed an arbitrary point (x, y)
on a circle x2 + y2 = C . The velocity vector points along the tan-
gent to the circle at the point (x, y), and its x–component is equal
to y . We now see two congruent triangles rotated over 90± with re-
spect to each other. Therefore, the length of the velocity vector has
to be equal to the circle radius, which in this case is

p
C . This means

that the point (x(t ), y(t )) moves clockwise with uniform velocity
p

C
along the circle x2 + y2 = C (you could also say that it moves with
uniform angular velocity °1).

When comparing these observations with the explicit solutions (1.7)
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Figure 1.8: Reconstructed velocity vector of the spring

for this case

x(t ) = R cos(¡° t )

y(t ) = ẋ(t ) = R sin(¡° t )

we see also that the point (x(t ), y(t )) moves clockwise at uniform
velocity R along the circle x2 + y2 = R2. As you can see, both de-
scriptions match exactly if we take R =

p
C .

Remark 11. 1. There is a special integral curve x2 + y2 = C with
C = 0. What motion of a spring or a (linearized) pendulum
does this correspond to?

2. We call the oscillations x = x(t ) of the spring with equation
ẍ =°x harmonic as they are the projection of uniform circu-
lar motions. This terminology goes back to the ancient Greeks.

In Exercise 1.6.4 you can see that we can similarly interpret
the oscillations of the more general equation ẍ =°!2x.

In general, we shall call any mechanical, electronic, or other
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system described by such an equation of motion a harmonic
oscillator. In Figure 1.9 we show how the above picture and
the graph of the trajectory x = x(t ) are related to each other.

Figure 1.9: Oscillation related to circular motion in the phase plane

The pendulum

Next, consider the pendulum equation

ẍ =°sin x or its system form

(
ẋ = y

ẏ =°sin x ,

with integral curves y2 = 2cos x +C , C ∏ °2, see (1.16). By plotting
the integral curves y =±

p
2cos x +C for various values of C , we find

Figure 1.10.

1. For C = °2 only the points (x, y) = (2kº,0) with integer k,
satisfy the equation. Each such point represents a “motion”
of the pendulum where constantly x(t ) = 2kº and, also con-
stantly, y(t ) = ẋ(t ) = 0: the pendulum is at rest in its lowest
position. These singular points therefore correspond to the
stable equilibrium position of the pendulum.
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Figure 1.10: Integral curves of the pendulum

2. For °2 < C < 2, the domain of the functions ±
p

2cos x +C is
constrained by cos x ∏ °C

2 . At the boundary points the tan-
gent lines are vertical. Together the two graphs describe a
closed oval curve centered around the points (x, y) = (2kº,0).
Such curves correspond to “ordinary” oscillations of the pen-
dulum around its stable equilibrium point.

You can check that the point (x(t ), y(t )) traverses the curve in
finite time, the period of oscillation, also see Section 1.5, af-
ter which the pendulum returns to the original position and
velocity: the motion is periodic. You can see also that the am-
plitude always remains smaller than º.

3. For C > 2, the functions ±
p

2cos x +C are defined for all real
values of x. Their graph corresponds to rotational motions:
here the pendulum does full swings, which means that it is
turning over. In the equation with the plus sign, ẋ = y > 0:
x(t ) is increasing as a function of t and therefore the pendu-
lum moves counterclockwise. Similarly, for the minus sign
the motion goes clockwise. As you can see in Figure 1.10,
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the velocity of the pendulum is maximal at its lowest position
x = 2kº, and minimal at x = (2k+1)º, when it passes through
it upside down position.

4. For C = 2 the curves are at the boundary between the regions
of ordinary oscillations and of the rotational motions of the
pendulum. The points x(t ) = ((2k + 1)º,0) are special here:
they are also singular but correspond to the unstable equi-
librium in which the pendulum is at rest in its upside-down
position.

Moreover, there are two possible motions of the pendulum,
both starting and ending in this unstable equilibrium: one
going clockwise and the other counterclockwise. A further
difference between these motions and the previous ones, is
that they last infinitely long: the velocity vector (ẋ, ẏ) = (y,°sin x)
decreases to 0 as it approaches the singular points ((2k+1)º,0).

We conclude that the formula y = ±
p

2cos x +C , together with the
above figure, contains a great deal of information on the motion of
the pendulum. We repeat that this is especially important since, as
opposed to the harmonic oscillator, for the pendulum there is no
explicit time-parametrized solution like (1.5) or (1.7).

Remark 12. 1. In the case 2 of “ordinary” oscillations, again con-
sider the velocity vector

µ
ẋ
ẏ

∂
=

µ
y

°sin x

∂
.

A direct computation shows that its length is always greater

22



1.3. The phase plane and the line element field

than or equal to
p

1°C 2/4 :

ẋ2 + ẏ2 = 2cos x +C + sin2 x

=C +2° (1°cos x)2

∏C +2°
µ
1+ C

2

∂2

= 1° C 2

4
.

This immediately implies that the oval curves are traversed in
finite time.

2. The geometric reconstruction of the velocity vector

µ
ẋ
ẏ

∂

from the integral curves y2 = 2cos x +C , C ∏°2, runs exactly
as for the spring in Section 1.3.1: indeed, this reconstruction
only relies on the fact that ẋ = y and that the velocity vector is
always tangent to the integral curve.

Pictures like Figures 1.7 and 1.10 are generally called phase portraits.
These phase portraits depict characteristic integral curves of the
systems of differential equations (1.13), with an arrow indicating the
direction in which the point (x(t ), y(t )) moves along the curve.

1.3.2. Line element fields

Let us return to the differential equations (1.14), now written as

x dx + y dy = 0 and sin x dx + y dy = 0.

Reasoning in terms of small increments, as we did before at the be-
ginning of Section 1.3.1, these equations define line element- or di-
rection fields in the (x, y)-plane. The direction is given at each point
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(x, y) by the respective velocity vectors,
µ

y
x

∂
or

µ
y

°sin x

∂
:

the corresponding ratios °x/y and °sin x/y are precisely the slopes
of the corresponding integral curve y = y(x) at the point x. See Fig-
ure 1.11 below for the case of the spring.

Figure 1.11: Line element at the point (x, y) related to the spring

This idea can be extended to any differential equation of the form

ẍ = F (x) , (1.17)

where F (x) can be interpreted as the force that “sustains” the mo-
tion. Using the familiar formulæ ẋ = dx

dt = y and ẏ = dy
dt = F (x), we

arrive at the line element field

°F (x)dx + y dy = 0.

How can we perform the geometric reconstruction of the velocity
vector from the line element in this general case?

In the next section, we develop a general method to describe the in-
tegral curves belonging to a differential equation of the form (1.17)
or, in other words, to describe its phase portrait.
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1.4. Energy

For both the pendulum and the spring almost all motions are peri-
odic: the system returns to a previous state and the motion repeats
itself. This suggests that no energy is lost throughout the evolution
of the system. In what follows we will investigate this conjecture in
detail.

1.4.1. Kinetic and potential energy

Let us consider an oscillating system with sustaining force F = F (x).
We saw at the end of the last section that its equation of motion is
given by (1.17)

ẍ = F (x).

For simplicity, we assume that for the point mass we always have
m = 1. In the phase plane we get the system of equations

(
ẋ = y

ẏ = F (x) .

Because we assumed m = 1, the kinetic energy T of the state (x, y)
with velocity y = ẋ is given by T = 1

2 y2: this is a well-known formula
from early mechanics courses, think of “T = 1

2 mv2”.

Next, let us look at the potential energy V of the system. To this end
we generally define

V (x) =°
Zx

0
F (s)ds . (1.18)

The integral is the total amount of work done (or the energy that has
to be delivered) to bring the system from the position 0 to the posi-
tion x. Physically it is important that the variable x (and therefore
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1. It oscillates forever

also s) describes a real distance and not an angle, as for example in
the pendulum, compare Exercise 1.6.11. To fix thoughts let us first
consider a few examples.

1. Considering free fall motion of a mass m = 1 in a constant
gravitational field with acceleration g , the force is F (s) = °g
for any height s. The corresponding potential energy V (x) of
the point mass at height x then is

V (x) =°
Zx

0
F (s)ds = g x.

Again, a well-known formula: think of “mg h”.

2. One way to obtain the “good” potential energy for the pen-
dulum is to consider it as a special case of the above item 1.
In that case, the height can be computed as `(1° cos x), see
Figure 1.12. Therefore

V (x) = g`(1°cos x).

See also Section 1.6.11.

3. In the case of the spring, only the sustaining force F (s) =°ks
plays a role. Using the definition (1.18), we obtain

V (x) =°
Zx

0
F (s)ds = 1

2 kx2.

The lower limit 0 in the integral defining the potential (1.18) is not
really important, you can just as well take another constant. This is
due to the fact that only differences in potential energy play a role
in the equations of motion. You can immediately see this from the
formulas. Indeed, from the definition it immediately follows that

F (x) =°dV
dx

(x),

therefore an additive constant in V (x) will not affect the equation of
motion ẍ = F (x).
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1.4. Energy

Figure 1.12: The height of the point mass of the pendulum

1.4.2. Conservation of energy

In our case where the mass m = 1, the total energy of the system in
the state (x, y) is given by

H(x, y) = 1
2 y2 +V (x) . (1.19)

The title of this section seems to imply that energy is conserved, but
what does that mean?

Suppose that, at some moment t = t0, the system is in the state
(x, y) = (x(t0), y(t0)) with energy H(x, y) = E . Then H should have
the same value E for all t , i.e.,

H(x(t ), y(t )) = E for all t .

Note that in an oscillating system like the spring, in general both x
and y = dx

dt keep changing all the time, and therefore also both the
kinetic energy 1

2 y2 and the potential energy V (x). The fact that the
total energy H is conserved means that there is a continuous con-
version of the kinetic energy into potential energy and vice versa.
We now mathematically show that energy conservation indeed does
apply.
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1. It oscillates forever

Theorem 1. The curve determined by the equation H(x, y) = E is an
integral curve of the line element field y dy °F (x)dx = 0.

Proof. We take the equation H(x, y) = E and (1.19) and solve for y :

y =±
p

2(E °V (x)) .

For such a graph we find

dy
dx

=±
dV
dx (x)

p
2(E °V (x))

= F (x)
y

,

which exactly means that it solves the equation y dy = F (x)dx.

Without giving a proof, we state that there is at most one integral
curve of y dy °F (x)dx = 0 passing through each point of the (x, y)–
plane. Theorem 1 then tells us exactly what these integral curves
are: they are formed by all the possible curves with equation H(x, y) =
E . A curve H(x, y) = E is called the energy level with energy E .

But why is the entire plane filled with energy levels? In the above
proof we have been a bit sloppy with the case y = 0. See the Exer-
cises 1.6.3 and 1.6.4. We will come back to this in Section 2.2.2.

At this point, some of you may have looked at Figure 1.10 and won-
dered how we can reconcile the Existence and Uniqueness Theorem
with the fact that curves seem to cross each other at certain points,
giving the impression that more than one integral curve passes through
those points.

In the corresponding description of the dynamics in Section 1.3.1,
you will notice that those points are the unstable equilibria, where
the pendulum stands upside down. The points themselves form
singular curves, and the integral curves approaching them do so in
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1.4. Energy

an asymptotic sense: they approach (going forward or backward in
time depending on which part of the curve we consider). Since the
velocities in the unstable equilibria vanish, the time to reach them
is infinite.

1.4.3. Energy conservation and the phase portrait

We can now use Theorem 1 to determine the phase portrait of our
system.

For the spring with spring constant k = 1 we have F (x) =°x. We can
take as potential V (x) = 1

2 x2, to get total energy H(x, y) = 1
2 y2+ 1

2 x2.
The energy level with energy E is therefore the curve

1
2 y2 + 1

2 x2 = E .

And again we find the circles that we already met in Section 1.3.1.

In exactly the same way we can find the integral curves of the pen-
dulum. For simplicity, we take m,` and g all equal to 1. Now F (x) =
°sin x and we can choose V (x) = 1°cos x, obtaining H(x, y) = 1

2 y2+
1°cos x. The energy level H(x, y) = E is then described by

y =±
p

2(E +cos x °1) ,

as we already saw in Section 1.3.1.

The general case

Returning to the general case, from the relation y = ±
p

2(E °V (x))
we can graphically determine the integral curves for any given po-
tential energy V .
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1. It oscillates forever

Figure 1.13: Potential V with a minimum and a corresponding integral
curve. From the formula E = 1

2 y2 +V (x), we see that for y = 0 the en-
ergy value E on the V (x)–axis are exactly values of the potential energy
E = V (x); from the graph of this function we then find the corresponding
values x = xmin and xmax, as described in the text.

30



1.4. Energy

Suppose the function V , around some minimum, is given by the
graph in Figure 1.13. Fix some value for E . The function V attains
this value for x = xmin and x = xmax, i.e., at those points V (x) = E .
Since 1

2 y2 ∏ 0 for any value of y , we know that the motion with en-
ergy E must be confined to the interval xmin ∑ x ∑ xmax: after all we
must always have V (x) ∑ E . Moreover, the formula also implies that
at xmin and xmax we have y = 0 and at the minimum Vmin we have
y =±

p
2(E °Vmin).

Fig. 1.14: Sliding or
rolling in a potential
well

In Figure 1.13 we present a schematic
sketch of the integral curve. In Exer-
cise 1.6.6, you can experiment with a num-
ber of potential energy functions (also
known as potentials) and with the corre-
sponding phase portraits. In the same ex-
ercise you are also asked to derive a num-
ber of general properties of the phase por-
trait that only depend on the shape of the
graph of V .

Let us briefly return to the idea of the bead
that slides frictionless along a wire (or the marble rolling in a gutter);
also compare one of Huygens’ problems mentioned in the Pream-
ble.

There is a very pictorial way to imagine motion of a system with
potential function V = V (x), as the one outlined in Figure 1.14 and
energy E .

You can think of this as the motion of a bead that slides back and
forth along a wire shaped as the graph of the function x 7! V (x).
You can then imagine that the bead is released at some height E ,
falls down – thereby gaining velocity and therefore kinetic energy
– and then climbs up the wire, slowing down until the height E is
reached again.
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1. It oscillates forever

However nice this thought may be, we have to keep in mind that this
is only approximately correct: unless you use the arclength parame-
ter along the wire instead of the variable x, the shape of the wire and
that of the graph of the function x 7!V (x) do not exactly match.

For instance, for the pendulum the shape of the wire is circular, but
V (x) = 1° cos x. In Exercise 1.6.8 we will return to this, as well as
to the problem of designing a wire the potential energy of which is
exactly equal to V (x) = 1

2!
2x2, i.e., of the harmonic oscillator. This

will be the way to solve Huygens’ problem of finding an isochronous
curve posed in the Preamble. See also the comments in Remark 8.

Two examples

We conclude this section with two examples of a given graph V =
V (x), where we sketch the corresponding phase portraits. See the
Figures 1.15 and 1.16. Note that the scales on the x-axis and y-axis
are not equal.

Let us explain Figure 1.15 a bit further. As in Figure 1.13, the en-
ergy values E1, . . . ,E5, correspond to values x via the graph of the
function V , so that the point (x,0) in the phase plane lies on the
corresponding energy level. Figure 1.16 goes completely similar.

1.5. Period of oscillation

Although we can compute at any point (x, y) of the phase plane the
velocity vector (y,F (x)), we have effectively lost the ability to de-
termine the global behavior of the system as a function of time.
However, when studying oscillatory motion it is useful to have an
expression in terms of the potential V for the period of oscillation.
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1.5. Period of oscillation

Figure 1.15: Phase portrait of a potential V with a minimum and a maxi-
mum, the corresponding equilibria are called center and saddle point. Can
you imagine what the term “saddle point” refers to?
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1. It oscillates forever

Figure 1.16: Phase portrait of the pendulum with potential V (x) = 1°cos x
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1.5. Period of oscillation

This is a classical issue, compare Huygens’ problems mentioned in
the Preamble, and the time has come for us to address it.

Figure 1.17: A single oscillatory motion

1.5.1. A general expression for the period of
oscillation

Let us assume that the oscillatory motion occurs in the energy level
E with xmin ∑ x ∑ xmax, see Figure 1.17. Using the fact that y = dx

dt
and equation (1.19), we get that

dx
dt

=±
p

E °V (x).

Let tmin < tmax be consecutive times such that x(tmin) = xmin and
x(tmax) = xmax, that is two consecutive times in between which the
upper arc of the trajectory in Figure 1.17 is traversed. We first rewrite
the above expression in an infinitesimal form

dt = ±1
p

E °V (x)
dx .

Next, integrating both sides of this equation with respect to t from
tmin to tmax, chosing the the plus-sign since we move along the up-
per branch, for the half period of the motion we get

1
2 P (E) = tmax ° tmin =

Zxmax

xmin

dx
p

2(E °V (x))
.
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1. It oscillates forever

The fact that the integral is half of the period follows from a symme-
try consideration: indeed, the motion is symmetric under reflection
in the x–axis, compare Exercise 1.6.2.

1.5.2. Spring and pendulum

Again first consider the example of the spring

ẍ =°x ,

where we choose V (x) = 1
2 x2. Then for E > 0 we find

xmin =°
p

2E and xmax =+
p

2E ,

which implies

P (E) = 2
Zp

2E

°
p

2E

dx
p

2E °x2
.

This integral can be explicitly computed with some knowledge of
elementary calculus, from which we recall that

d
dx

arcsin x = 1
p

1°x2
.

This directly gives
P (E) = 2º,

which is independent of the energy E . This isochrony is not new: we
already observed this in Remark 2.

Together with Huygens, we find the case of the pendulum

ẍ =°sin x ,

far more interesting. In this case, given the energy E , we have

P (E) = 2
Zxmax

xmin

dx
p

2cos x +2E °2
. (1.20)
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1.5. Period of oscillation

Figure 1.18: Numerical approximation of the period P (E) (1.20) of the pen-
dulum as a function of the amplitude xmax

This integral turns out to be very difficult to compute. It has even
been proven that the integral cannot be expressed in terms of “el-
ementary” functions. It turns out that similar integrals occur in
the computation of the arclength of an ellipse, the reason why one
speaks of elliptic integrals, see Exercise 1.6.10. Such integrals also
emerge when one tries to find a general solution for the pendulum
in terms of time parametrization.

Remark 13. 1. Be that as it may, but having a closed expression
(1.20) at our possession is convenient. Indeed, it enables us
to approximate the period of oscillation, for instance by nu-
merical means. Compare Figure 1.18.

2. Elliptic integrals have kept mathematicians busy throughout
the centuries, and even today they remain a subject of active
research – in particular their algebraic and geometric proper-
ties.

We conclude this section with a comment on the period of the pen-
dulum which follows without any calculation. Choosing again the
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1. It oscillates forever

potential energy V (x) = 1°cos x, the oscillating motions take place
in energy levels E for 0 < E < 2, see Section 1.3.1. The closer E is to
2, the closer the corresponding integral curve passes to the unsta-
ble equilibrium of the upside-down pendulum. This equilibrium
indeed occurs exactly at the energy level E = 2.

Since the velocity vector (y,°sin x) near the equilibrium gets smaller,
the motion of the point (x(t ), y(t )) on the integral curve gets slower.
As a result, the period of oscillation P (E) increases as E approaches
2. In fact, one can show that

lim
E%2

P (E) =1 ,

again compare Figure 1.18. One immediate consequence of this is
that the period of oscillation of the pendulum varies with the energy
(and therefore the amplitude) of the oscillation, and is not constant
as with the spring. We express this by saying that the pendulum is
an anisochronous oscillator.

1.6. Exercises

1.6.1. The vertical spring

Consider a point particle with mass m that
is mounted at the end of a vertically sus-
pended spring that moves in the vertical di-
rection only (and cannot swing). We indi-
cate its position by x: the x-axis therefore is
vertical. The point x = 0 corresponds to the
position at which the spring is at rest: the
spring is stretched to compensate the grav-
ity °mg acting on the mass. We assume
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1.6. Exercises

that, according to Hooke’s law, the spring
exerts a force that is proportional to deviation:

F (x) =°kx.

1. At what height is the point mass at rest?

2. Find the equation of motion for x(t ).

3. Determine the solutions of the equation of motion.

1.6.2. The horizontal pendulum

Consider a pendulum with length ` and
mass 1 in the horizontal plane. The pendu-
lum rotates without friction around a fixed
point O. If x denotes the displacement an-
gle with respect to a given axis, give the
equation of motion for x(t ) and determine all its solutions. Sketch
a phase portrait. In what way can this pendulum be interpreted as
a limit of the usual vertical pendulum?

1.6.3. Symmetries of the line elements field

Show that the line elements field y dy ° F (x)dx = 0 is symmetric
with respect to reflections in the x-axis. I.e., if the direction of the
field at a point (x, y) is (ª,¥), its direction at the point (x,°y) is given
by (ª,°¥). What does this imply for the directions at points of the
x-axis? What does this imply for the integral curves?
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1. It oscillates forever

1.6.4. Ellipses and time rescalings on the spring

Consider a point particle of mass m = 1 attached to a spring with
stiffness k. The potential (or potential energy) of the spring is V (x) =
1
2 kx2.

1. Determine the equation of the energy level E in the phase
plane, give a sketch.

2. Show that the energy level becomes a circle if you replace y
with z = y/

p
k.

3. Check that by rescaling the time with ø= t
p

k, the equation of
motion becomes ẍ = °x. How is this related to the previous
point?

1.6.5. Amplitudes and energies

Consider a spring with potential V (x) = 1
2 kx2 and a pendulum with

potential V (x) =° g
` cos x. In both cases, compute the amplitude of

the oscillation in terms of the energy. (The amplitude is half of the
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difference between the maximum and minimum value that the x
coordinate assumes throughout the periodic motion.)

1.6.6. Phase portraits

A number of potential functions are outlined in Figure 1.19. Sketch
the corresponding phase portraits and discuss the effect of (local)
maxima and minima and of horizontal asymptotes on how the level
curves fill up the phase plane.

Figure 1.19: Potential energy profiles. From left to right: V (x) = x + 1
x ,

V (x) = 4
x2 ° 8

x +2 and V (x) = x4 °2x2

1.6.7. The cycloid

If one rolls a bicycle wheel on the ground, ensuring that it always
moves in the same vertical plane, then its valve describes a curve
that is called cycloid. Here we will study the case of a bicycle wheel
rolling along the ceiling.

You can see the latter depicted
on the right: R denotes the ra-
dius of the wheel and ' the an-
gular displacement of the valve
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1. It oscillates forever

from the vertical direction. The position of the valve on the circle is
indicated by a double arrow.

1. Use the figure to show that the following is a parametrization
of the cycloid (

x(') =°R('+ sin')

y(') = R(1°cos') .

In the sequel, we shall refer to R as the radius of the cycloid
and to ' as its rolling angle, see Appendix A.

2. Sketch the cycloid in the (x, y) plane for °º∑'∑º. Does this
curve have any symmetries? Where does it have a horizontal
tangent? And where a vertical one?

3. Let s(') be the arclength of the cycloid, measured from '= 0.
Show that s(') = R

p
2(1°cos') = 4R sin

°
1
2'

¢
.

4. Finally, show that

y(') = 1
8R

s2(').

Hint for 2: in general, one can use the Pythagorean Theorem to
compute the length of an infinitesimal piece of curve parametrized
by some parameter ¡.

Referring to the figure on the right we get

ds =

sµ
dx
d'

∂2

+
µ

dy
d'

∂2

d¡ .

If we now fill in the values for x and y from the first item of the ex-
ercise, we get

ds = R
p

2(1+cos')d¡= 2R cos
°

1
2'

¢
d'.
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It then follows that s(') = 4R sin
°

1
2'

¢
. Note that this is an arclength

’with sign’ which can serve as a real coordinate with ' = 0 as the
origin.

1.6.8. Huygens’ isochronous and tautochronous curve

In the text, we have seen that a bead that slides along a circular wire
(or a marble that rolls into a circular gutter) corresponds to a po-
tential V (x) = 1°cos x. Which potential corresponds to a bead that
slides along a wire, bent according to a cycloid as in the previous
exercise?

1. Show that the cycloid is an isochronous curve.

2. A tautochronous curve is defined by the fact that, from what-
ever height the bead is dropped, the downtime is always the
same.

Show that the cycloid is also tautochronous.

1.6.9. Period and area

Consider an oscillator with potential V (x) as depicted in Figure 1.20.
Let A(E) be the area in the phase plane that is enclosed by the en-
ergy level H(x, y) = E (shaded in the figure). Let P (E) be the period
of the oscillation with energy E . Show that the following holds

P (E) = dA(E)
dE

.

Hint: in the figure, we indicated the energy level H(x, y) = E along-
side with H(x, y) = E+dE . Try to prove that the shaded area is equal
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1. It oscillates forever

Figure 1.20: Phase portrait of an oscillator

to dE multiplied by the time that the oscillator needs to move from
x0 to x0 +dx.

1.6.10. Elliptic integrals

When studying the period of oscillation of the pendulum we en-
countered elliptic integrals. By definition, an elliptic integral is any

44



1.6. Exercises

expression of the form
Z

R
≥
x,

p
P (x)

¥
dx

where P (x) is a polynomial of degree 4 and where R(x, y) is a ra-
tional function of x and y . I.e., P (x) is a polynomial of the form
P (x) = Æ+Øx +∞x2 +±x3 + ≤x4 and R(x, y) is the quotient of two
polynomials in x and y , e.g.,

R(x, y) = x2 °x y ° y3

1°x2 + y2 .

Show that the expression
Z

dx
p

2cos x +C
,

used in Section 1.5.2 to describe the period of the pendulum, can
be transformed into an elliptic integral by a substitution.

Show that calculating the arclength of a piece of ellipse (also) gives
rise to an elliptic integral.

Hint: An ellipse is a curve that can be described by the equation

x2

a2 + y2

b2 = 1.

1.6.11. The potential energy of the pendulum

Derive the potential energy of the pendulum with length ` by using
a variable u which, unlike the angle x, corresponds to a real distance
and then applying

V (x) =°
Zx

0
F (s)ds.
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1. It oscillates forever

What happens if you directly compute the potential energy out of
the equation of motion

ẍ =°g
`

sin x ,

so neglecting the fact that x is not a real distance?
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2. It oscillates in resonance

If you look around, you will notice that almost nothing vibrates “for-
ever” in the sense of the previous chapter. That is because, in re-
ality, energy is always lost to frictional or damping forces. Damp-
ing by air resistance, friction at suspension points, electrical resis-
tance: all possible causes for energy loss. However, according to a
thermodynamic principle, energy is always preserved and the “lost”
mechanical or electric energy is just transferred into thermal en-
ergy, or heat.

If we do not exert any external forces on such a system with friction
to keep the oscillation going, it will eventually “die out” and end up
remaining in an equilibrium position. To prevent this, a pendulum
clock is forced by gravity – via the “weights” – or by a wound coil
spring.

Without entering into the details of the physics describing the prin-
ciples above, we will successively involve these two new effects into
our story by introducing friction, damping and external forcing, where
our main interest lies in the mathematical study of periodically forced
oscillators with or without friction and damping.

2.1. Friction

2.1.1. A friction directly proportional to the velocity

How do we fit the frictional force into our mathematical descrip-
tion? From our experience we know that in general, friction in-
creases with the velocity, just think of air resistance. The easiest way
to express this is to assume that the strength of the frictional force
is directly proportional to the velocity, i.e.,

W =°cẋ, c > 0. (2.1)
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2.1. Friction

This type of friction is known as linear friction. The minus sign here
is to indicate the “opposing” character of W . With the help of New-
ton’s law we get the equation of motion

ẍ = F (x)° cẋ , (2.2)

recalling that ẋ = dx
dt and ẍ = d2x

dt 2 . Here F = F (x) is the usual sus-
taining force from the previous chapter. For the pendulum and the
harmonic oscillator (e.g., the spring) this gives the following equa-
tions of motion

ẍ =°!2 sin x ° cẋ , and (2.3)

ẍ =°!2x ° cẋ . (2.4)

Recall from Chapter 1 that for a pendulum of length ` in the con-
stant gravitational field with acceleration g we have !2 = g /` and
for a spring with mass m and stiffness k we have !2 = k/m.

Of course there are more ways than (2.1) to translate into mathe-
matics an increase in frictional force with velocity. From the phys-
ical point of view, (2.1) is not always a good choice: for instance,
air resistance increases much faster at high velocities than in direct
proportionality to the velocity.

To give you an example, a very different type of friction, is the so-
called Coulomb- or dry friction. Mathematically, it looks like this

W =
(

a if ẋ < 0

°a if ẋ > 0
.

Dry friction is briefly discussed in Chapter 3, see also Exercise 2.6.3.

There are two reasons behind our choice to focus on (2.1): firstly, it
is not a bad description in many practical situations, and secondly,
it is mathematically relatively easy to use.

49
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Figure 2.1: Linear versus dry friction

Remark 14. 1. Friction typically occurs when contact with a solid
body takes place, for instance friction at the suspension point
of a pendulum or friction when moving a body over a surface.

2. Damping is caused by the motion of an object through air.
The linear form (2.1) can be used to model this and in this
case goes under the name of Raleigh damping.

3. A moving car experiences air resistance, say Raleigh damping.
At the same time its tires on the road experience friction, say
linear friction. In practice, often a mix of damping and fric-
tion will occur.

By the way, when the tires are too deflated there is too much
friction, however, if there is no friction at all the car cannot
move.

2.1.2. The R-L-C circuit

This is another example from electronics. As we will see, in this case
the “choice” (2.1) naturally follows from Ohm’s law. In the L-C cir-
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cuit from Chapter 1 we neglected the resistance of the wires. In-
stead of ignoring it, we will now assume that the circuit contains a
resistor with resistance R, which may also include separate addi-
tional resistors. While the physics of the electrical circuit is not re-
ally important for our purposes, we can continue using the analogy
from Section 1.1.4 with a closed pipe filled with liquid and think of
a resistor as a clogged section of the pipe that slows down the flow
passing through it. As before, we refer to [138] for the physical back-
ground.

Figure 2.2: R-L-C circuit

According to Ohm’s law, the voltage difference VR across the resistor
is given by

VR = I R

where, as before, I is the current. Kirchhoff’s law then requires that

VR +VL +VC = 0,

which, by a similar calculation as in Section 1.1.4, implies that

R
dI
dt

+L
d2I
dt 2 + I

C
= 0,

or

L
d2I
dt 2 =°R

dI
dt

° 1
C

I .
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2. It oscillates in resonance

Due to Ohm’s law, the friction or damping term now is

W =°R
dI
dt

,

which is of the form (2.1). The equation of motion thus becomes of
type (2.2).

Remark 15. 1. In the present context friction takes on a different
shape only in special physical conditions, such as with very
high intensity of the current I or with superconductivity.

2. In the sequel we shall often neglect the subtle differences in
the terminology and generally speak of damped oscillations,
letting alone the exact physical causes.

2.2. Loss of energy due to friction

We have already mentioned the experimental fact that damping causes
the motions to die out into equilibrium states. In what follows we
will study a mathematical description of damping and give phase
pictures of the damped harmonic oscillator and of the damped pen-
dulum.

In the previous section, we met the general equation

ẍ = F (x)° cẋ, c > 0.

For a damped oscillator, special cases are (2.3) and (2.4) from Sec-
tion 2.1.1: the pendulum and the harmonic oscillator, both with
damping.

Again we first consider the phase plane. The equations of motion
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take the form (
ẋ = y

ẏ = F (x)° c y.
(2.5)

In analogy to Chapter 1, we set F (x) = °dV
dx (x). Then, the total en-

ergy is H(x, y) = 1
2 y2+V (x). Eliminating time t from (2.5) as before,

we end up with the line element field

dy
dx

= F (x)
y

° c ,

or
(c y °F (x))dx + y dy = 0.

Mathematically, we can translate that energy is lost during the mo-
tion into saying that for a solution (x(t ), y(t )) of (2.5), the function
H(x(t ), y(t )) decreases with t . We will show that this is indeed the
case (except at the equilibrium points) by looking at the line ele-
ment field. Recall that the integral curves of the line element field
correspond precisely to the integral curves (x(t ), y(t )) of (2.5), see
Section 1.3.

2.2.1. When the undamped motion oscillates

For an oscillating motion of the undamped system we know that
the energy is conserved. Indeed, such a motion sits in a level curve
H(x, y) = E for a certain value of E . For instance think of a situation
where E is slightly above a local minimum in the potential function
V . We now show that adding damping will result in a motion for
which the energy decreases.

The line element at a point (x, y) on the energy level with energy E
is determined by the velocity vector

° y
F (x)°c y

¢
. Now observe that

µ
y

F (x)° c y

∂
=

µ
y

F (x)

∂
+

µ
0

°c y

∂
.
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2. It oscillates in resonance

Figure 2.3: Integral curve of an oscillation

Here (y,F (x)) is the velocity vector of the undamped system and
therefore it is tangent to the curve H(x, y) = E ; see Section 1.4. The
vector (0,°c y) is vertical and points towards the x–axis (unless y =
0). This means that their sum points towards the inner area of the
curve H(x, y) = E , see Figure 2.3, i.e., to the area in the phase plane
with lower energy. In turn, this means that H decreases during the
evolution of the system. So in the case where the undamped motion
oscillates, we are done.

Before we consider the general case, let us consider the damped
harmonic oscillator with != 1

ẍ =°x ° cẋ .

In the (x, y)-plane, this takes the form
(

ẋ = y

ẏ =°x ° c y .

Unless x = y = 0, the undamped motion always oscillates and our
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2.2. Loss of energy due to friction

previous remarks apply. Since now H(x, y) = 1
2 (x2 + y2), the energy

levels are concentric circles around (x, y) = (0,0), see Section 1.4.

Figure 2.4: A typical damped oscillation in the phase plane

This means that the integral curves of the damped system are spi-
rals, see Figure 2.4. (What is the direction on the x–axis? And on the
y–axis?)

In this simple case the solution x(t ) can be written explicitly as

x(t ) = e°
c
2 t (A cos(∫t )+B sin(∫t ))

= e°
c
2 t R cos(¡°∫t ) , where

∫2 = 1° c2

4
.

Compare with formulæ (1.5) and (1.7) from Chapter 1. You can ver-
ify that the formula above provides a solution just by substitution
into the differential equation. Direct calculations can also confirm
that the integral curves (x(t ), y(t )) in the phase plane do have a spi-
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2. It oscillates in resonance

raling shape. For c = 1
2 we give numerical evidence for this in Fig-

ure 2.5. It is also useful to plot x(t ) and see how it changes as c gets

Figure 2.5: Damped oscillation in the phase plane with != 1 and c = 1
2

Figure 2.6: Plot of x(t ) with c = 1
2

Figure 2.7: Plot of x(t ) with c = 1

larger, see Figure 2.6 and Figure 2.7. The oscillation dampens very
quickly for large values of c.

Remark 16. In this example we fixed ! = 1. For a generic value of

! we have ∫2 =!2
≥
1° c2

4!2

¥
, compare this with Exercise 1.6.4. Note

that in all cases ∫∑!.
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2.2. Loss of energy due to friction

2.2.2. The general case

We shall see that the considerations for the general case do not dif-
fer much from the previous ones. Due to the form of the energy
function H(x, y) = 1

2 y2 +V (x), the vector
° 0
°c y

¢
always points in the

direction of lower energy. Indeed, since the vector
° y

F (x)

¢
is always

tangent to the energy level, the sum F (x)° c y is necessarily always
pointing in the direction of lower energy.

Remark 17. We have included the following calculation for those
who know a bit about partial derivatives and the Chain Rule. Start-
ing out from the formulæ

H(x, y) = 1
2 y2 +V (x) (energy),

F (x) =°dV
dx

(x) (relationship between force and potential),
(

ẋ = y

ẏ = F (x)° c y
(damped equations of motion),

we aim to investigate the change of H along an integral curve (x(t ), y(t ))
of these equations of motion. In fact we shall prove that

d
dt

H(x(t ), y(t )) =°c y2(t )

which indeed means that the energy H decreases. (Why?)
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2. It oscillates in resonance

Proof. The proof consists of a direct computation:

d
dt

H(x(t ), y(t )) = @H
@x

(x(t ), y(t ))
dx
dt

(t )+ @H
@y

(x(t ), y(t ))
dy
dt

(t )

= dV
dx

(x(t )) · dx
dt

(t )+ y(t ) · dy
dt

(t )

=°F (x(t ))y(t )+ y(t )
°
F (x(t ))° c y(t )

¢

=°F (x(t ))y(t )+F (x(t ))y(t )° c y2(t )

=°c y2(t ) ,

as was to be proven.

Note that this formula, applied with c = 0, proves the proposition
in Section 1.4.3, namely that in the undamped case the energy is a
conserved quantity.

Let us explain our considerations in the case of the damped pendu-
lum, for simplicity taking g /`= 1:

ẍ =°sin x ° cẋ ,

which in the phase plane takes the form
(

ẋ = y

ẏ =°sin x ° c y
. (2.6)

As before, we choose as potential energy V (x) = 1°cos x. Then the
following holds.

1. It is easily seen that the equilibrium points (singularities ẋ =
0 = ẏ) are the same as in the undamped case: (x, y) = (kº,0)
for any integer number k.

2. For 0 < E < 1 the undamped motion is an ordinary oscillation.
In that area of the phase plane we can apply the reasoning of
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2.2. Loss of energy due to friction

Figure 2.8: The saddle point (x, y) = (º,0) of the undamped and the damped
pendulum (note that these coincide) and a small neighbourhood of this. In-
troducing the damping makes the convergence to the point faster and the
escape slower, thereby increasing the slope of the incoming integral curve
(top left and bottom right) and reducing the slope of the outgoing ones (bot-
tom left and top right). Compare with the equilibrium point on the left or
right hand side of Figure 2.9

.

Section 2.2.1: the integral curves spiral towards the equilib-
rium points (x, y) = (2kº,0), for integers k.

3. Without proof we mention that the equilibrium points (x, y) =
((2k+1)º,0), k integer, remain “of the same type” as in the un-
damped case: these are again called saddle points. Compare
with Exercise 1.6.6 and its solution in Section E.1.6; also see
Section 1.4.3, in particular Figure 1.15

To explain this further we observe the following. These saddle-
points have two incoming and two outgoing integral curves,
which have pairwise the same tangent line at the saddle point
itself. The difference with the undamped situation is that these
curves are shifted: upwards to the left of the saddle point and
downwards to the right. See Figure 2.8.

This is exactly the effect of the damping
° 0
°c y

¢
which is added

to the velocity vector at each point (x, y) of the phase plane.
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2. It oscillates in resonance

The consequences of the above considerations are sketched quali-
tatively in Figure 2.9. This should also clarify how the other integral
curves move in between.

It is not difficult to see that all solutions are moving towards an equi-
librium point. Almost all of them go to (x, y) = (2kº,0) for integer k,
corresponding to the stable equilibrium. Apart from periodicity in
the x direction, there are exactly two integral curves ending up in
the unstable equilibrium with the pendulum upside down. Com-
pare with Figure 2.10.

2.3. The damped harmonic oscillator with
periodic forcing, resonance

In this section we include in the game ex-
ternal forces that vary periodically in time.
Just think of a swing that gets pushed pe-
riodically, or rather forced by a person that
stands or sits on it while performing peri-
odic motions. You can also think of a pen-
dulum whose suspension point moves pe-
riodically up and down, or of an R-L-C cir-
cuit powered by an alternating current gen-
erator. In this section we will restrict our-
selves to the linearized situation where the
undamped and non-forced oscillator is harmonic.
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2.3. The damped harmonic oscillator with periodic forcing, resonance

Figure 2.9: Sketch of phase portrait of the damped pendulum

Figure 2.10: Numerical phase portrait of the damped pendulum (2.6) for
c = 0.3, where we omitted the integral curves tending to the saddle point as
these were already shown in Figure 2.9.
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2. It oscillates in resonance

2.3.1. “The” solution in the harmonic case

We start by considering the harmonic or linear case

ẍ =°!2x ° cẋ + A sin(≠t ) . (2.7)

Here the novelty is the external forcing A sin(≠t ), a time-periodic
function with frequency ≠

2º . In this simple case we can solve ex-
plicitly the equation of motion (2.7) and it turns out that it has a
periodic solution, which for ! 6=≠ reads

x(t ) = B sin(≠t +©), (2.8)

where B and© are given by

B = A
p

(≠2 °!2)2 + c2≠2
and (2.9)

tan©= c≠
≠2 °!2 , °º<©< 0.

You can check this immediately by substituting this solution in (2.7),
also see Exercise 2.6.4. Without proof we mention that this periodic
solution, apart from transient phenomena (see below), is the only
solution to the equation of motion (2.7). In Figure 2.11 we depict
the graphs of the functions t 7! A sin(≠t ) and t 7! B sin(≠t+©). The
periodic solution x(t ) = B sin(≠t +©) has the same period 2º

≠ as the
driving force U (t ) = A sin(≠t ), it is only shifted somewhat in time:
the solution lags behind the forcing by ©

≠ units of time. We call ©
the phase difference between the two.

But what did we mean by ‘transient phenomena’? First observe that
(2.8) does not cover all possible solutions of (2.7). Indeed, if we add
to it a solution of the homogeneous equation, that is equation (2.7)
where we set A = 0, then you can check with a direct computation
that we have found another solution. In fact, an arbitrary solution
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2.3. The damped harmonic oscillator with periodic forcing, resonance

Figure 2.11: Sketch of the periodic solution B sin(≠t +©), see (2.8), together
with the external forcing A sin(≠t ), see (2.7)

of (2.7) has the form

x(t ) = eBe°
c
2 t cos(e!t + e¡)+B sin(≠t +©), e!=

s

k ° c2

4
,

where ©, eB and e¡ depend on the initial conditions. Observe that
the additional term in general does not vanesh, but that it decays
exponentially. Therefore, when enough time has passed it has be-
come negligible compared to the main oscillatory term. It is quite
remarkable to think that different initial conditions only affects the
transient phenomena and the phase shift, but not the “main” am-
plitude and frequency of the oscillations.

Next, let us return to the example of the R-L-C circuit, see Section 2.1.2.
Suppose that we include in the circuit an Alternating Current (AC)
source supplying the voltage

E(t ) = A cos(≠t ).

Reasoning as before, Kirchhoff’s law gives

VR +VL +VC + A cos(≠t ) = 0,
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2. It oscillates in resonance

Figure 2.12: RLC circuit with an AC source E

which in turn leads to

LÏ =° 1
C

I °Rİ + A≠sin(≠t ) .

This is an equation of type (2.7); therefore all the above results ap-
ply.

2.3.2. Resonance in harmonic oscillators with periodic
forcing

When looking at (2.9), we see that the amplitude B of the periodi-
cally forced equation (2.8) blows up for c = 0 and ! = ≠. This im-
plies that B becomes large when the damping c is small and ≠ is
close to !, see (2.9). Recall that !

2º exactly is the frequency of the
oscillator without damping and forcing, the so-called natural fre-
quency. In other words, when the frequency of the forcing is close
to the natural frequency and the damping is small, the amplitude
of the generated oscillation may become large. This whole scenario
is called resonance. In Appendix D we shall also encounter other
examples of resonance.
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2.3. The damped harmonic oscillator with periodic forcing, resonance

Let’s philosophize a bit about the present resonance. Consider the
above example concerning the forced R-L-C circuit. Imagine that
the AC voltage source gives a “signal” E that combines various fre-
quencies. Then signals with frequencies that are close to the natural
frequency 1

2º
1p
LC

of the circuit will be amplified! Surely this will be
the case when the resistance R is small. When tuning a radio this
phenomenon is being used to select the signal of the station that
one wants to hear.

There are also lots of cases where it is important to avoid the occur-
rence of resonance. One that you may have experienced yourself
is when walking while holding a cup of coffee or tea in your hand.
When the oscillation of the body matches with the natural oscilla-
tion frequency of the fluid in the cup, resonance occurs which may
well make you spill the contents all over the place [109] It is even
more important to avoid resonances on a bridge! A bridge has all
kinds of parts that can vibrate. Assuming for a moment that these
consist of harmonic vibrations, then there is a natural frequency for
each of those. If a periodic force now is exerted on the bridge with
a frequency close to such a natural frequency, oscillations (deflec-
tions) of the material can become very large, possibly with disas-
trous consequences. Such periodic forces can for instance be sup-
plied by a passing train or by the wind, or simply groups of people
passing by – as notoriously occurred on June 10, 2000, during the
inauguration of the Millennium Bridge in London. This could also
happen when a column of soldiers is marching over the bridge, in
which case the “out of step” command will be given.

We conclude this section with some numerical plots. In Figure 2.13
we depict solutions of the equation of motion

ẍ =°x ° cẋ + sin(≠t ), (2.10)

for different values of c and for ≠ = 1.2, together with the plot of
the forcing sin(≠ t ). In Figure 2.14 you can find the corresponding
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2. It oscillates in resonance

x(t)
sin(1.2 t)
t

x
c=1

x(t)

sin(1.2 t)
t

x
c=0.1

Figure 2.13: Solutions of (2.10) for ≠= 1.2 and c 2 {1,0.1} together with the
periodic forcing term

integral curves in the phase plane. Why can the curves intersect in
this case?

x

x
c=1

x

x
c=0.1

Figure 2.14: Phase curves of equation (2.10) for≠= 1.2 and c 2 {1,0.1}

Finally, Figure 2.15 shows the amplitude B in equation (2.9) of the
solution of (2.10) with c = 0.1 as a function of≠. Here we see a clear
example of a resonance peak. If in the radio receiver the peak is nar-
row and high, it is possible to tune sharply to the corresponding fre-
quency. If the peak is wide and low, sharp tuning is impossible.
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2.4. Resonance in non-harmonic oscillators with periodic forcing

Ω=1

10

Ω

B(Ω)
c=0.1

Figure 2.15: Resonance peak: amplitude B (2.9) as function of ≠ for equa-
tion (2.10) with c = 0.1

2.4. Resonance in non-harmonic oscillators
with periodic forcing

Harmonic or linear oscillators, with or without damping, already
form an incredible source of mathematical insights. They also play
a tremendous role in all kinds of physical or engineering applica-
tions. If we let go of the harmonic character, as with the pendu-
lum, things become far more difficult; this is especially true for res-
onance phenomena. Active mathematical research is still being car-
ried out on this, for more information see Appendix D. Below we
give two examples, both based on the pendulum, and give an im-
pression of the kind of motions you can expect.

2.4.1. Parametric resonance

In the introduction to Section 2.3 we already mentioned the exam-
ple of an undamped pendulum whose suspension point moves up
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2. It oscillates in resonance

and down periodically.

Here we consider a similar system that is
slightly simpler to model: if we assume that the
rod terminates with an oscillating spring and
the total length of the rod and the spring at rest
is `, then we can model this system with the fol-
lowing equation of motion

ẍ =°!2(1+ A cos(≠t ))sin x , !2 = g
`

, (2.11)

where the spring oscillates with frequency ≠
2º

and amplitude A.

For A = 0, that is, when the rod is of a fixed length, we have already
seen in Chapter 1 that the pendulum generally oscillates around the
lower, stable equilibrium. If we linearize the oscillation, applying
the small oscillation approximation described in Section 1.2, we re-
place sin x by x, obtaining the Mathieu equation

ẍ =°!2(1+ A cos(≠t ))x

to which we shall return in Appendix D.

We state the following without proof. When A is small and≠ is close
to an integer multiple of!/2, the oscillations are no longer confined
around the equilibrium point (x, ẋ) = (0,0): the equilibrium loses
stability. The shaded regions in Figure 2.16, commonly called reso-
nance tongues, provide a schematic representation of the regions of
instability in the (≠, A)–plane. It turns out that in these shaded re-
gions the upside-down equilibrium point (x, ẋ) = (º,0) of (2.11) can
become stable. Refer to Appendix D for a more detailed explanation
of this phenomenon.

Here we speak of parametric resonance. We give two examples of
how this resonance manifests itself in real life. These concern specif-
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2.4. Resonance in non-harmonic oscillators with periodic forcing

ically the resonance originating from ≠= 1
2!. The destabilizing ef-

fects of this resonance cause ships that go on an increasing wind
astern to start rolling and even capsize. The stabilizing property
seems to be used by circus artists to get more stability when per-
forming balancing tricks, compare with Arnold [5, Section 25].

Figure 2.16: Sketch of resonance tongues for the Mathieu equation, inside
the tongues the lower equilibrium is unstable; for a more realistic picture
see Appendix D.

2.4.2. Non-linear modeling

In the previous cases, the types of motion that occurred were quite
clear. Let us review them for a moment:

1. The system is stationary, there is no motion;

2. The system is in a periodic motion, it oscillates;

3. After some transient phenomena the system ends up in either
of the two above situations.

However, when considering the pendulum with both damping and
forcing

ẍ =°!2 sin x ° cẋ + A cos(≠t ) , (2.12)
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2. It oscillates in resonance

we witnessed different types of dynamics.

Indeed, to fix thoughts let us set!2 = 6.4, c = 0.6 and A = 3.8, and let
≠ vary. With numerical means and a computer you can easily gen-
erate images of the evolution t 7! x(t ) for different values of ≠, as
shown in Figure 2.17. For≠ 2 {1.6,1.7,1.8} one can see that the mo-
tion is not of the types listed above. More or less oscillating behav-
ior is alternated abruptly by behavior in which the pendulum does
a full swing once or several times. Moreover, these are no transient
phenomena that eventually disappear and make way for “calmer”
motions. Such unpredictable behavior is called chaotic.

Equations like (2.11) and (2.12) are often used to model physically
far more complicated systems, mainly for behavioral reasons: the
dynamical behavior somehow resembles that of the more compli-
cated system.

Remark 18. The Josephson junction that plays a role in superconducti-
vity is an example of a system where (2.12) is being used as a non-
linear model; compare with [100].

For more information about the new types of dynamics we refer to
the Appendices C and D.

2.5. The stabilization of oscillations

How does a child on a swing slow down the rocking motion?

Almost everyone knows from experience that this is being done by
moving one’s body in an “appropriate” way. Phenomenologically we
may speak of stabilization: the “behavior” of the swinger brings the
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Figure 2.17: Motions of the forced damped pendulum (2.12) for various val-
ues of≠
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swing into its equilibrium position. It is not that easy to translate
this specific behavior into mathematical terms.

Let us thus discuss the following, highly simplified situation. Con-
sider the harmonic oscillator ẍ =°x (think of the swing), on which a
force F can be applied (think of the person on the swing). The equa-
tion of motion describing the total system (swing with swinger) is
quite familiar now:

ẍ =°x +F.

We are left with the following question. Can we determine a force F
such that motions are being stabilized? In other words, if the swing
is out of its equilibrium state (x, ẋ) = (0,0), how can we send it back
there by the force F . Moreover, this force should be determined by
the state of the system itself. This set-up is called feedback. To be
precise, such an F is a feedback control.

2.5.1. First attempt

First, let us try to achieve our objective by simplifying as far as pos-
sible the system under consideration, ignoring any friction and let-
ting F be a suitable function of the deviation x alone. For each
choice of F = F (x) we get as “total” equation of motion

ẍ =°x +F (x).

However, this equation is of the kind we already studied in Chap-
ter 1. Namely, by defining

V (x) =
Zx

0
(ª°F (ª))dª,

we can rewrite the equation of motion as

ẍ =°dV
dx

.
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2.5. The stabilization of oscillations

For these equations, we saw that the energy E = 1
2

≥
dx
dt

¥2
+V (x) is

a conserved quantity. This means that you can only end up at an
equilibrium point if you were already there in the first place. So,
unfortunately, this first attempt was unsuccessful.

2.5.2. Second attempt

Let us try to take F =°dx
dt . In this case we are done: the equation of

motion is
ẍ =°x ° ẋ

and it only has motions that lose energy and evolve towards (x, ẋ) =
(0,0). This is exactly what we want: after the transient phenom-
ena, we are in equilibrium and the motion has stabilized; see Sec-
tion 2.2.

The practical drawback of this method is that the instantaneous ve-
locity ẋ(t ) cannot be measured so easily: while this was not a point
of concern for our previous analysis, since this is a control prob-
lem and thus suddenly it matters since it implies that the control is
less feasible. See also comments in Section 1.3.1 with respect to the
phase plane.

2.5.3. Third attempt

Finally, let us try to choose a force F that even though it depends on
the position x, it does not depend on the position of the swing at
the time where F is exerted. Instead, let F depend on the position
the swing had some fixed time earlier, say ±. To be more precise we
take F of the form

F (t ) = Ax(t °±) ,
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2. It oscillates in resonance

where A is some constant. In this case, the “total” equation of mo-
tion reads

ẍ =°x + Ax(t °±) . (2.13)

For small ± we can use the approximation

x(t °±) = x(t )°±ẋ(t ) ,

and for A > 0 we get roughly the equation of a damped harmonic
oscillator: all solutions lose energy and evolve towards (x, ẋ) = (0,0),
again see Section 2.2.

Also in this case we have obtained stabilization although we did not
obtain it via a rigorous computation and, instead, we reasoned via
an approximation. That is why it is a good idea to double-check the
result by numerical means once again, see Figure 2.18. Feedback

Figure 2.18: Plot of the harmonic oscillator with feedback control (2.13)

controls like the one presented in this chapter play an important
role in automatic control systems such as automatic pilots, chemi-
cal process controllers, etc.
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2.6. Exercises

2.6.1. Negative damping

In electronics there are many oscillators with negative damping.
Show that a positive-damping oscillator changes into a negative-
damping oscillator with the transformation ø=°t (i.e., by reversing
the direction of time). What does this say about the energy and the
phase portrait of negative damping oscillators?

2.6.2. Tossing a fair coin

Consider a point particle moving under the influence of the follow-
ing potential

V (x) = x4 °2x2 ,

compare Exercise 1.6.6. Introducing a (small) damping, the equa-
tion of motion changes into

ẍ =°dV
dx

(x)° cẋ, c > 0 small .

Describe the phase portrait of this system and find out what is the
connection with “tossing a fair coin”.

2.6.3. A “controlled” oscillator

Consider a harmonic oscillator whose center is moving with respect
to the velocity as described by the following equation of motion

ẍ =°x °a sgn(ẋ),
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2. It oscillates in resonance

where a > 0 and sgn(x) = x/|x| if x 6= 0 and 0 otherwise. Discuss the
phase portrait of the system and describe the connection to the “dry
friction” introduced in Section 2.1.1.

2.6.4. A damped oscillator with forcing

A harmonic oscillator with damping is driven by an external force.
If the external force is F (t ) = A sin(≠t ), the motion of the oscillator
is given by x(t ) = B sin(≠t +¡), after the extinction of the transient
phenomenon. Here A,B and ≠ are three positive constants. See
formula (2.8).

1. How large is the energy supplied to the oscillator by the exter-
nal force per period?

2. Let the equation of motion of the damped oscillator be given
by

ẍ =°x ° cẋ +F (t ), c > 0.

For the motion x(t ) = B sin(≠t +¡) as mentioned above, how
much energy per period is lost by the oscillator due to the
damping?

3. Using the results from the points above, show that sin¡ is
negative.

4. At a time in which x(t ) is maximal, that is, when≠t+¡= (2k+
1
2 )º, the velocity of the point mass is zero and its acceleration
is °B≠2. At that time there is no acting damping force: only
the driving force °B of the oscillator and the external force
F (t ) are affecting its motion. Use this information to show
that

B (1°≠2) = A cos¡.
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2.6. Exercises

5. Use the above results to show that

tan¡=° c≠
1°≠2 and B = A

p
c≠2 + (1°≠2)2

2.6.5. The Van der Pol–Liénard differential equation

In a few steps we will arrive at the phase portrait of the following
equation of motion,

≤ẍ =°x + ẋ ° ẋ3 ,

which describes the evolution of an oscillator with non-linear damp-
ing. In particular, we will focus on the case where ≤ is a small posi-
tive number.

Give, in the following order, the phase portraits of

1. ẋ =°x, ≤ẏ =°y ;

2. ẋ =°x, ≤ẏ =°(x + y);

3. ẋ = y, ≤ẏ =°(x + y);

4. ẋ = y, ≤ẏ =°(x + y + y3);

5. ẋ = y, ≤ẏ =°(x ° y + y3);

Hint: The idea is to make a clear distinction between the so-called
slow motion and the fast motion. We here assume that ≤ is very
small.

In case 1. we then get the following situation. In the first, very short
phase, the x coordinate will hardly change and the y coordinate will
become almost equal to zero: one could say that the equation ≤ẏ =
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2. It oscillates in resonance

Figure 2.19: Phase portrait of the first case in Exercise 2.6.5

°y is dominant. In the second phase, the motion will take place at
or near the “curve of slow motion” ß, obtained by setting the right-
hand side of the second equation equal to zero: in case 1. this is the
x-axis. On ß, the motion is given by the first equation. So we get a
picture like in Figure 2.19.

Finally, describe what happens when we “continuously deform” the
equations from case 4. to case 5. You can do this by making the
equation dependent on a parameter µ 2 [°1,1]:

ẋ = y, ≤ẏ =°(x +µy + y3) .

For what value of µ does the phase picture change most drastically?
Describe this change.
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Oscillations that we encounter in our daily lives, for instance in na-
ture or at the core of our hi-tech devices, are generally of a far more
complicated nature than we have seen so far. However, the con-
cepts introduced earlier such as energy, friction and damping, ex-
ternal forces, resonance and the like continue to play an impor-
tant role. It is also often possible to describe physically complicated
phenomena in a simplified manner using examples as we saw in the
previous chapters. It is important to ensure that simplifications do
not throw away the child with the bath water: it remains necessary
to trace back enough of the original problem to achieve meaningful
conclusions.

In general, every mathematical description of reality will, almost
necessarily, lead to some losses. It is therefore important to find an
as good as possible description. The development of such descrip-
tions is called modeling. In this context, we would like to point at a
simplification that is often tacit, namely linearization, see also Sec-
tion 1.2. In order not to lose too much in that process, deviations
from equilibrium states should not become too large. Please, keep
these thoughts in mind while reading the present chapter, of which
we are now going to outline the contents.

Real life examples. In Section 3.1 we present a few real-life ex-
amples of oscillations, where some terminology from physics will
be needed. The remark about simplifications is especially impor-
tant here.

Coupled oscillators. In Section 3.2 we discuss oscillatory phe-
nomena that can be understood as composed of a finite number
of oscillations in the sense of the previous chapters. This section
has a more mathematical nature with a focus on Lissajous figures,
where two coupled oscillations in the sense of Chapter 1 play a role.
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As a further example, we will consider a pendulum whose motions
are not confined to one vertical plane, but where the point mass is
allowed to perform spatial motions; we speak of a spherical pen-
dulum. The dynamics of such a system again turns out to be a
combination of two “ordinary” oscillations. In Appendix B we shall
deal more generally with coupled oscillators and also encounter the
spherical pendulum in the context of the Foucault experiment.

Figure 3.1: Vibrating string

Vibrations in continuous media. Next, in Section 3.3 we shall
discuss vibrations of continuous media. This kind of vibration can
be thought of as composed of an infinite number of “ordinary” os-
cillations. Our leading example will be the sound vibration in an
organ pipe.

To fix thoughts we first briefly start discussing a vibrating string. In
Figure 3.1 we depict such a string that can move in the (x,u)-plane.
We assume that the end points of the string are firmly fixed at the
points (x,u) = (0,0) and (x,u) = (1,0). In addition, we assume that
each point of the string can only move in the vertical direction, i.e.
the u-direction.

In the idle state, the string coincides with the interval [0,1] on the x-
axis. At a given time t we indicate the (vertical) deviation at a point
x with u(t , x). For fixed t , the shape (or configuration) of the string
is then given by the graph of the function x 7! u(t , x). The question
then is how this function changes over time.
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3. Oscillations in daily life

Roughly speaking we can say that for every point x 2 [0,1] we con-
sider the evolution of t 7! u(t , x), so that its motion is an oscillation
in the spirit of Chapter 1. In that sense we have an infinite number
of “ordinary” oscillations. Note that these oscillations are far from
independent: indeed, due to the elastic properties of the string, the
oscillations are strongly coupled.

Remark 19. As already noted, the mathematical treatment of string
oscillations, or sound vibrations in an organ pipe, is far more com-
plicated than what we saw earlier. This is because we are now deal-
ing with both the spatial variable x and the time t . The equation of
motion of the function x 7! u(t , x) thereby becomes a so-called par-
tial differential equation, a subject that we shall only briefly touch
upon. For an introductory text we refer to Olver [122].

In Section 3.3 will investigate how such a system of “infinitely many
oscillators” can be approximated by (linear) systems consisting of a
finite number of point masses, interconnected by massless strings.
This is called discretization of the continuous system. This discretiza-
tion is further elaborated in the case of an organ pipe: the longitudi-
nal air vibrations in the pipe are somewhat easier to deal with than
the transverse vibrations of the string. At the end of the chapter, we
briefly discuss a few other vibration and wave phenomena, includ-
ing those related to sound and light.

3.1. Two further examples of oscillators

In this section we deal with two miscellaneous real-life examples of
oscillations in the sense of Chapter 1. In both cases, less emphasis
will be given to precise mathematical statements in favour of more
phenomenological discussions; also some physical principles will
be used without further comments.
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3.1. Two further examples of oscillators

3.1.1. A plank bridge

Figure 3.2: Plank bridge over a ditch

A person with mass m stands in the middle of a massless plank ly-
ing over a ditch. Due to gravity, the plank bends a little. According
to the linear theory, this sag is equal to u = mg /k, where g is the
acceleration of gravity and k is the stiffness of the plank, interpreted
as a spring. See also Exercise 1.6.1. This approach “works” as long
as the sag is small.

By performing knee bends in a constant rhythm, someone can check

that the plank resonates at a frequency f = 1
2º

q
k
m , compare with

Section 2.3. The person is acting here as a drive or forcing. There-

fore f = 1
2º

q
g
u , so the larger u, the lower the natural frequency f .

Does that correspond to your own intuition?

Remark 20. You can also observe such resonance phenomena with
a piano, where the dampers are off the strings, or with a guitar. An
external sound can cause a certain string to resound, or resonate.

3.1.2. Rolling of a ship

In this example, we consider the rolling of a ship, that is, the tilting
of the ship about its longitudinal axis, see Figure 3.3. Also within
rolling oscillations resonance phenomena can occur. In a small boat,
we can become aware of this by wiggling it transversally with the
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3. Oscillations in daily life

Figure 3.3: Boat rolling about its longitudinal axis

correct rhythm or when the boat responds to waves coming in from
the side.

In this case, for the natural frequency, we need to replace the for-
mula !2 = k/m from Section 2.3 by !2 = c/I : here c represents
the revolving torque per unit of angular displacement exerted by
the upward force K due to buoyancy and I is the moment of iner-
tia with respect to the longitudinal axis. Again see Figure 3.3. For
background, refer to [83, 138].

How does c show up in this game? Well, when the angle '= 0 then
the force K acts exactly in a plane of symmetry. Assuming that the
center of gravity Z also lies in this plane, we see that K does not ex-
ert a torque on Z . If the ship now tilts over angle¡, e.g., clockwise as
in the figure, then the right part of the ship dives a little deeper into
the water, while the left part rises a little. The upward pressure (or
buoyancy) increases slightly on the right and decreases on the left.
The resulting upward force K consequently moves to the right. For
small angles ', the working line of K will intersect the axis of sym-
metry at a fixed point MC , the so-called metacentre. The distance
h from Z to MC is called the metacentric height. Now it holds true
that c = K h (can you see why?). From this it follows that the higher
MC , the larger the natural frequency.
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3.2. Coupling finitely many oscillations

We note that h is partly determined by the shape of the ship. For
example, a round biscuit tin where Z and MC practically coincide
has little to no shape stability (the ability of a vessel to stay upright
due to its shape). How about a submarine? And a manned rowing
boat with a fairly high center of gravity? Keep this in mind if you
ever try to stand up in a small rowing boat.

Remark 21. The history of buoyancy and shape stability studies goes
back at least to Archimedes of Syracuse (287-212 BC). His famous
law, part of his two volumes on hydrostatics entitled On floating
bodies, marked a turning point in the understanding of floating sta-
bility. Archimedes’ law states that the buoyancy force on a float-
ing body is an upward force with magnitude equal to the weight
of the fluid displaced by the body. This law lies at the core of the
above discussion. For general background information again com-
pare with [83, 138].

3.2. Coupling finitely many oscillations

All the examples that we have seen so far involved only one posi-
tion variable, in a more fancy language: the configuration space is
always one-dimensional. Another way of saying the same, is that
these are systems with one degree of freedom. In engineering these
cases are referred to as 1-mass-spring systems, where tacitly the model
is assumed linear.

We now turn to oscillatory phenomena the description of which re-
quires a finite number of position variables, the so-called number
of degrees of freedom of the system in question.

The considerations to follow require a bit more mathematics and a
more thorough treatment is postponed to Appendix B.
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3.2.1. Lissajous figures

Both in the Preamble and in Section 1.4.3 we encountered the idea
of conceiving an oscillator as a bead sliding along a wire or as a mar-
ble in a gutter (disregarding friction and the rolling motion). Now,
to formalize the current ideas, we replace the gutter by a bowl. Each
point on the bowl is a possible position of the marble. The bowl is
considered as a two-dimensional surface and hence the number of
degrees of freedom of such a system equals two. The problem in
this section is what kind of figures can be described by the marble
on this surface. This can be even more interesting when the bowl is
not exactly rotationally symmetrical, but say, oblong.

In part III of Minnaert’s The Nature of Light and Colour in the Open
Air [111] there is a discussion of a tree branch swaying in the wind.
This system generally has a different stiffness in the vertical and the
horizontal direction, and the end of the branch will describe figures
similar to the ones of the marble in an oblong bowl. If you would
tie a flashlight to the branch at dark, you could observe what these
figures look like.

The linear theory of this type of motion is mathematically well known
under the name of small oscillations, see Section 1.2 and Appendix B.
With the aid of linear algebra (vector geometry), we can show the
following. With an appropriate choice of position variables y1 and
y2, the system will look like a set of two uncoupled (i.e., indepen-
dent) harmonic oscillators

(
ÿ1 =°!2

1 y1

ÿ2 =°!2
2 y2 .

In the example of the marble in the oblong bowl, the variables y1

and y2 could respectively describe the direction of the length and
the width of the bowl. In that case, we would have !1 <!2. (Why?)
Oscillations of the system occurring along the line y2 = 0, so only in
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3.2. Coupling finitely many oscillations

the y1 variable, are called characteristic. As known from Chapter 1
all oscillations have the same frequency !1/2º, which is a charac-
teristic frequency. The same can be said of oscillations along the
line y2 = 0, which have characteristic frequency!2/2º. We can now
easily present all possible solutions using (1.7) from Section 1.1:

√
y1(t )
y2(t )

!
=

√
R1 cos(¡1 °!1t )
R2 cos(¡2 °!2t )

!

where the constants R1,R2,¡1,¡2 are determined by the state of the
system at any given time, say at t = 0. The curves in the (y1, y2)-
plane described by such solutions are called Lissajous figures. Their
shape is largely determined by the ratio !1/!2 of the characteristic
frequencies. We give some examples in Figure 3.4.

Figure 3.4: Lissajous figures

Remark 22. When!1 =!2, such as in the case of a rotationally sym-
metrical bowl or for the spherical pendulum mentioned before, the
Lissajous figures are ellipses (or degenerates ellipses in the form
of straight-line segments). For details on small oscillations of the
spherical pendulum we refer to Appendix B.

1. The non-linear theory of problems of two (or more) degrees
of freedom is also particularly rich. In connection with the
spherical pendulum, we mention the phenomenon of spher-
ical precession. The motion of the pendulum in this case is
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not an ellipse, but a rosette. You can think of it as (almost) an
ellipse that slightly rotates during each swing, again see Ap-
pendix B.

2. The spherical pendulum is still pretty tame. In more general
examples, the motions can become so complicated that one
speaks of chaos, see Section 2.4. In such cases, the mathemat-
ical theory is still quite unexplored. For certain impressions
see Appendix C.

Conclusive comments and questions. As said before the shape
of the Lissajous figure is “largely” determined by the ratio !1/!2. It
can be shown that degeneration into straight-line segments is al-
ways possible by choosing R1,R2,¡1,¡2 appropriately. Do you have
any idea what happens when the ratio !1/!2 is irrational (e.g., if
!1/!2 = 1/

p
2)?

In Section 1.3.1 we encountered the phase plane. It is important to
stress that the (y1, y2)-plane occurring here should not be confused
with this. What are the differences?

If in this context we perform the construction of Section 1.3, we
obtain a four-dimensional phase space of state space with similar
properties as the phase plane. The most important of these again is
determinism: the future of the evolution of the system is fully deter-
mined once we know the state of the system at any given time, that
is, at which point of the phase space the system is located.

Note that such a point in the phase space is composed of the po-
sitions y1 and y2 and the velocities ẏ1 = dy1

dt and ẏ2 = dy2
dt (com-

pare (1.3)): these four coordinates (y1, y2, ẏ1, ẏ2) exactly describe the
state of the system.
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3.2. Coupling finitely many oscillations

3.2.2. Beats

Beats as we know them. We probably all know the phenomenon
of beat tones: it happens when we hear the sound of two tones that
are close to each other in frequency, the result is a sound that pulses
continuously, decreasing and increasing.

Besides in the context of musical instruments, you can hear it in
the sound of a twin-engine aircraft. A primitive way to explain this
phenomenon is the following: two sound waves reach the eardrum
of our ear and deflect the membrane by quantities proportional to
sin((!°±)t ) and sin((!+±)t ). Here we assume that ± is small and,

Figure 3.5: A (schematic) beat tone

for the sake of convenience, we also assume that the amplitude is
the same in both cases, say 1. According to the sum-to-product for-
mulas from trigonometry,

sin(Æ)+ sin(Ø) = 2sin
µ
Æ+Ø

2

∂
cos

µ
Æ°Ø

2

∂
,

thus the superposition of both deflections yields,

sin((!°±)t )+ sin((!+±)t ) = 2cos(±t )sin(!t ).

We hear the pitch corresponding to the frequency !
2º ; while the pro-

cess of mutually reinforcing and quenching of the wave has fre-
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3. Oscillations in daily life

quency ±
2º . What happens when the amplitudes of the two signals

are not equal?

Beats in coupled oscillators

We next discuss a problem that shows a certain similarity with the
above: also here beats occur. As we shall see this occurrence has to
do with an exchange of energy. Let us come to the point at once.

Figure 3.6: Two pendulums coupled by a spring

Two identical pendulums are linked by a spring as shown in Fig-
ure 3.6. All motions take place in one vertical plane. For simplic-
ity we fix the masses, the lengths of the pendulums, and the ac-
celeration of gravity, all equal to 1. Furthermore, the length of the
unloaded spring is equal to the distance between the suspension
points. We will denote by k the spring constant. In the course of
the story that unfolds now, we will choose k small (in a sense to be
explained below), which is why one speaks of weak coupling.

Here we recognize a system with 2 degrees of freedom: the configu-
ration of the system is determined by the angular positions x1 and
x2. In what follows, we are going to investigate the behavior of the
system in the vicinity of the equilibrium solution x1 = x2 = 0.

First, let’s describe the type of behavior that is of interest to us. If
we let one of the pendulums, say the left one, be at rest in the lower
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3.2. Coupling finitely many oscillations

equilibrium and let the other, the right one, perform small oscilla-
tions, the following happens. After a while, the right pendulum will
come to rest in its lower equilibrium while the left one “takes over”
the motion. Now left and right switch roles: after about the same
time, the left pendulum is at rest and the right one is moving. This
process is repeated forever, the kinetic energy is continuously trans-
ferred from one pendulum to the other and vice versa. This can be
demonstrated in a test setup, although the “everlasting” character
cannot exist in reality due to the ever-present damping . . .

Remark 23. Let us for a while consider the left pendulum on its own.
In a somewhat one-sided view of the case, you could say that it is
forced by the right pendulum in a rather complicated way. Some-
how, the motion of the left pendulum is very reminiscent of the vi-
bration of the eardrum in the example of sound beats as discussed
earlier. This is one reason to speak of beats in this case as well.

In the above we used the term “small oscillations”. This means that
for a proper mathematical description, we first switch to a linear
model: as in Section 1.2, we approximate sin x1 º x1 and sin x2 º x2.
Without proof, we claim that the resulting linear system completely
falls within the theory of small oscillations; for a more complete and
detailed description see Appendix B. As said earlier, the main point
of this theory is that for a suitable choice of position variables the
system completely decouples. It should be clear at this point that
these variables cannot be x1 and x2: the entire description above
with the energy transfer indicates that these are strongly coupled.
As it turns out, in this case we have to use the new variables y1 and
y2 defined by

y1 = 1p
2

(x1 +x2) and y2 = 1p
2

(x1 °x2) . (3.1)

With this choice, one can check that the system decouples to
(

ÿ1 =°!2
1 y1

ÿ2 =°!2
2 y2 ,
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where !1 = 1 and !2 =
p

1+2k. What do the characteristic oscil-
lations look like now? From the above, we can directly obtain the
sketch in Figure 3.7. We further describe Figure 3.7 as follows.

Figure 3.7: Characteristic oscillations of the coupled pendulum system

Left y2 = 0: Characteristic oscillations of the y1-variable with fre-
quency !1/2º; this means that x2 = x1 and the pendulums
move in phase.

Right y1 = 0: Characteristic oscillations of the y2-variable with fre-
quency !2/2º; this means that x2 = °x1 and the pendulums
move in anti-phase.

Why does the spring constant k play no role in the value of !1 and
how can one see that !1 < !2 without explicit computation? Here
comes another analogy to the sound beats: we are apparently deal-
ing with two uncoupled oscillators with frequencies that, for small
k, are close together. The tones in the sound example here corre-
spond to characteristic oscillations.

Let us first try to understand the beat phenomenon without calcula-
tions. It is an important property of the linear theory that any mo-
tion of both pendulums can be written as a superposition (addition)
of the characteristic oscillations just described. This is schemati-
cally depicted in Figure 3.8. During the first few periods, the mo-
tion is largely restricted to the right pendulum, the left one remains
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3.2. Coupling finitely many oscillations

Figure 3.8: The superposition principle

approximately at rest. This happens because !1 and !2 are almost
equal. However, !2 is slightly larger than !1, so the oscillation with
!2 is slightly faster than that with !1. Therefore, if we wait long
enough, the !2-motion has a “phase” that becomes 180± ahead of
the!1-motion. The superposition of both these oscillations, sketch-
ed in Figure 3.9, shows that now the right pendulum has become
stationary, while the left one is swinging with the initial amplitude.
And so on. Therefore this reasoning gives a solid qualitative descrip-
tion of the motion.

Figure 3.9: The superposition principle continued

Now let us compute a few things. To this end, we first write out the
characteristic oscillations in the x1 and x2 variables. Using equation
(3.1) one can simply verify that this is equivalent to

x1 = 1p
2

(y1 + y2) and x2 = 1p
2

(y1 ° y2).

As we saw in Section 3.2.1, the formulas for the characteristic oscil-
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lations in the y variables are

y1(t ) = R1 cos(¡1 °!1t ), y2(t ) = 0 and

y1(t ) = 0, y2(t ) = R2 cos(¡2 °!2t ) .

In the x variables these correspond to

x1(t ) = x2(t ) = 1p
2

R1 cos(¡1 °!1t ) and

x1(t ) =°x2(t ) = 1p
2

R2 cos(¡2 °!2t ) .

As said before, in the linear theory you can interpret all motions as
the sum of characteristic oscillations. It follows that we now have
the general solutions

√
x1(t )
x2(t )

!
= 1p

2

√
R1 cos(¡1 °!1t )+R2 cos(¡2 °!2t )
R1 cos(¡1 °!1t )°R2 cos(¡2 °!2t )

!

where R1,R2,¡1,¡2 depend on the state of the system at any fixed
time, say at t = 0.

The kind of motion of interest to us now, so where the beats (should)
occur, has the property that R1 = R2 and ¡2 = º°¡1. Substituting
these values, after possibly applying a translation in the t variable,
we can safely assume that¡1 = 0. This means that we are left with

x1(t ) = 1p
2

R(cos(!1t )°cos(!2t )), x2(t ) = 1p
2

R(cos(!1t )+cos(!2t )) ,

where R = R1 = R2. Again applying some trigonometry we obtain

x1(t ) =°R
p

2sin
°

1
2 (!1 +!2)t

¢
sin

°
1
2 (!1 °!2)t

¢

x2(t ) = R
p

2cos
°

1
2 (!1 +!2)t

¢
cos

°
1
2 (!1 °!2)t

¢
.

Recall that !1 = 1 and !2 =
p

1+2k. Using the fact that k is small,
we have that approximately !2 º 1+k. Can you see why this is true?
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3.2. Coupling finitely many oscillations

(Hint: we found it helpful to remember that for small k > 0 one has
k2 ø k.) The motion then gets the form

x1(t ) = R
p

2sin
°
(1+ 1

2 k)t
¢

sin
°

1
2 kt

¢
and (3.2)

x2(t ) = R
p

2cos
°
(1+ 1

2 k)t
¢

cos
°

1
2 kt

¢
,

depicted in Figure 3.10. This computation confirms what we saw

Figure 3.10: Beats of the weakly coupled oscillators

before; evidently we now get more detailed information, such as the
frequencies of oscillation and beating, the maximum amplitudes,
and so on. It is good to think a bit about the similarities and differ-
ences between this example of the weakly coupled pendulums and
that of the sound beats.

To complete the story, in Figure 3.11 we give the Lissajous figure
that belongs to the motion described by formula (3.2). Try to find a
practical difference between this Lissajous figure and those in Sec-
tion 3.2.1, particularly paying attention to the observability.

That is all concerning the weakly coupled pendulums. This kind of
beat may occur in many variations, think of two identical springs,
weakly coupled by a third, or the so-called Wilberforce pendulum,
briefly discussed below. It is also quite easy to devise test set-ups to
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Figure 3.11: Lissajous figure of the weakly coupled oscillators

try out for yourself. However, it is more difficult to find these beat
phenomena in everyday life.

Nevertheless, we suggest the following experiment. The main in-
gredient for this is a well-tuned piano. Detach the dampers from
the strings and find a tone where the string is doubled once. As in
Section 1.6.1, we view these two strings as 1-mass-spring systems
with the same spring constant (pitch). The string suspension, the
soundboard, and the air create a weak coupling between the two.
Now excite one of the strings with your hand, leaving the other at
rest. What do you expect to hear and what do you hear? Note that
this setup is different from one where you would aim to demon-
strate sound beats.
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3.2. Coupling finitely many oscillations

Wilberforce. To conclude the discussion on beats
consider the Wilberforce spring: a system consist-
ing of a rather long vertical coil spring attached to
a rigid cylindrical-shaped body at the bottom, com-
pare with the figure to the right.

In a first approximation, we observe two types of os-
cillation: vertical motions (in the u direction) and
rotations about the vertical axis (in the ' direction),
also called torsional oscillations.

After linearization around the equilibrium state where the system is
at rest, we can speak about the frequencies of these two oscillators.
These depend on the elastic properties of the spring, the mass and
the moment of inertia of the cylinder about the vertical axis. We
here assume that these two frequencies are equal.

On closer inspection, both oscillators turn out to be weakly cou-
pled. Indeed, since we are dealing here with a coil spring (spiral), a
weak torsional force occurs when moving in the vertical direction;
the spring will tend to slightly coil or uncoil itself depending on the
compression or extension. In this case, the pitch angle Æ of the spi-
ral spring plays a role. Based on the above, we would expect beats
in which energy in the vertical oscillator is exchanged with energy
in the torsion pendulum. And, indeed, you can observe these beats
in the physical realizations of this pendulum. You can find plenty of
examples on the internet.

3.2.3. More than two degrees of freedom

Whether or not we are dealing with two or more degrees of free-
dom is not very important for the linear theory. Mutatis mutan-
dis, the above story concerning small oscillations can now be told
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3. Oscillations in daily life

again. The important point is that with a suitable choice of posi-
tion variables such a system reduces to a finite number of decoupled
systems of one degree of 1-degree-of-freedom oscillators, compare
Appendix B.

Regarding the non-linear theory, we only want to add the following
to what has already been said at the end of Section 3.2.1: the com-
plexity of the systems increases somewhat if we consider three or
more degrees of freedom instead of only two.

We conclude this section with an example of the motions of a tug-
boat (that we conceive of as a rigid body). In Section 3.1 we already
met with the rolling motion of a boat. Similar considerations also
apply to so-called yawing, a rotational motion about the transverse
axis, see Figure 3.12.

Heave

Yaw

Surge
RollSway Pitch

Figure 3.12: Superposition of oscillations in a boat; the tugboat is called De
Kraak [152]

The metacentric heights for both motions will generally not be the
same. A third oscillation that a ship can perform is called heaving:
it concerns the vertical motions of the ship.

In general, a rigid body can perform six motions, three translations
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3.3. Vibrations of continuous media

and three rotations: the system has six degrees of freedom. This also
applies to a boat, as long as we consider it as a rigid body. We have
added the nautical names relating to these motions in Figure 3.12.
If we restrict ourselves to the oscillatory motion that the ship can
perform in more or less calm water, that is, rolling, pitching and
yawing, then we have a system of three degrees of freedom.

3.3. Vibrations of continuous media

In the introduction to this chapter we already met the vibrating string.
Further examples of systems that involve a continuum of oscilla-
tions are membranes, beams, air, water, . . . We already mentioned
the partial differential equations that here act as equations of mo-
tion. In general, these equations lend themselves badly to the kind
of mathematical analysis we have seen so far. In part because the re-
quired theory has not yet been developed. In many practical prob-
lems people rely instead on numerical analysis, which often pro-
vides sufficiently useful answers.

3.3.1. Discretizing the continuum

The discretization of the vibrating medium is one approach that can
be used for a numerical treatment of vibrating continua, but also
for deriving partial differential equations to model them. As said
before, the organ pipe is going to be our leading example.
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3. Oscillations in daily life

The organ pipe

We consider an organ pipe modeled as a cylindrically shaped tube.
Our objective is study the oscillatory motion of the air particles in
the pipe. For simplicity, we assume that the pipe is closed at both
openings, see Figure 3.13. Note that a real organ pipe is always
open, at least at the one end where the air is blown in.

Figure 3.13: Schematic organ pipe

We also make the following assumptions:

1. Gravity does not affect the motion of the air particles;

2. The air particles can only move in the longitudinal direction,
parallel to the pipe. By our choice of coordinates this will be
the x-direction;

3. We neglect any friction at the pipe wall.

An air particle that at rest has x–coordinate x0 now moves in the
x–direction that we denote by

t 7! x0 +u(t , x0).

So here u(t , x0) corresponds to the x–displacement of the particle
at time t . Finally, since both ends x0 = 0 and x0 = L of the pipe are
closed, for all t we have u(t ,0) ¥ 0 ¥ u(t ,L); compare this with our
comments on the vibrating string at the beginning of this chapter.
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3.3. Vibrations of continuous media

Remark 24. The length L of the organ pipe is important for the pitch.
For the moment we simply take L = 1, but later we will come back
to this.

In a discrete approach, we replace the above description by a model
that considers the air particles as a system of n equal point masses,
joined by identical massless springs, see Figure 3.14. Again all mo-
tion occurs in the x-direction. Since the evolution of the system is
independent of the vertical position, one can think of these point
masses as representing vertical slices of the air in the pipe.

Figure 3.14: Discretized organ pipe

The idea is that as n gets ever larger, this system will become an
increasingly better approximation of the air in the organ pipe. Let
us clarify this somewhat vague statement. First of all, we must de-
termine the size m of the masses and the spring constants. Since
the springs are massless, we distribute the total air mass M equally
over the point masses, that is, we could choose m = M

n . If we do this,
however, we penalize unevenly the extrema of the n–pipe relative to
the center. This problem is avoided if we always take m = M

n+1 . The
“residual” mass m then is distributed in two halves over the two ex-
trema. For the rest of the story, we stick to this last choice.

Next, we consider the spring constant k. We start by noting the fol-
lowing physical fact: If a spring with stiffness k is cut into two equal
pieces, each of the two halves will have stiffness 2k. Check that out
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3. Oscillations in daily life

for yourself, if you have a small spring laying around, try to cut it in
half and check how each half responds to being stretched or com-
pressed.

Now suppose that K is the return force of the air column in the pipe
which is (adiabatically) “pressed” or “stretched”. Recalling that the
length of the pipe equals L = 1, the pressure difference thus occur-
ring is multiplied by the area of the cross-section of the pipe. So it
turns out to be natural to give each of the n +1 springs the stiffness
constant k = (n +1)K .

In what sense can we now speak of a good approximation? At this
point it should be clarified that an organ pipe can produce more
than one tone. It is a well known fact in acoustics, that has fas-
cinated scientists since the middle ages: while Newton and Huy-
gens already provided some preliminary explanations [153], the first
complete mathematical derivation is due to Helmoltz in 1860 [81].

The lowest of such tones is the so-called fundamental (tone): Hel-
moltz original computation showed that all air particles oscillate

with the frequency f0 = 1
2

q
K
M . This is remarkably accurate, albeit

not exact, as was confirmed almost a century later. See [102], where
the first accurate physical explanation of the phenomenon was pro-
vided. The fundamental tone is achieved when the air in the pipe
oscillates over the whole length of the pipe, as shown in Figure 3.13.
If we believe that this resembles the oscillation of a spring, then we
can expect that the frequency of the fundamental tone is propor-

tional to
q

K
M , compare to Section 1.1.2. In addition to the funda-

mental, there are the so-called harmonics consisting of overtones.

The first overtone is produced by the configuration in Figure 3.15,
where the air in the center of the pipe is at rest. Here, all air particles

oscillate with the frequency f1 = 2 f0 =
q

K
M , this overtone sounds

an octave higher than the fundamental. Similarly, you also have
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3.3. Vibrations of continuous media

second, third, etc. overtones: the frequency of the `th overtone
is f` = (`+ 1) f0. What you hear in practice is always a combina-

Figure 3.15: The first overtone

tion (superposition) of fundamental and overtones. In our approxi-
mate model, fundamental and harmonics correspond to character-
istic oscillations. Recall from Section 3.2 that all possible motions
are (linear) combinations of characteristic oscillations, also see Ap-
pendix B. In the first approximation n = 1 we have only one char-

Figure 3.16: The fundamental and other harmonics as n increases

acteristic oscillation and therefore the pipe can only produce the
analog of the fundamental. For n = 2 there are two characteristic
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3. Oscillations in daily life

oscillations that we already know from Section 3.2.2. They corre-
spond to the fundamental and the first overtone, etc.

Below we will compute the characteristic frequencies for n = 1, 2
and 3 and see that these differ from the frequencies of the corre-
sponding overtones. However, these differences become smaller as
n gets larger, we aim to show this in more detail in the case of the
fundamental. It is in this sense that we can speak of an increasingly
better approximation of the organ pipe.

Computation of the characteristic frequencies. Now follows
the computation of the characteristic frequencies for n = 1,2 and
3.

Case n = 1 Let u denote the deviation of the mass from the equi-
librium state. Then one of the springs is extended by the amount

Figure 3.17: Case n = 1

|u|, while the other is compressed by |u|. Therefore, the equa-
tion of motion is given by

M
2

ü =°2K (u +u)

or
Mü =°8K u .

From Chapter 1 we know that solutions are oscillating with

! = 2
p

2
q

K
M and the corresponding frequency of oscillation

is
!

2º
=

p
2
º

r
K
M

º 0.450

r
K
M

.
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3.3. Vibrations of continuous media

Comparing this to the fundamental frequency f0 = 0.5
q

K
M ,

we see a rather crude though not unreasonable approxima-
tion.

Case n = 2 As said before, we already met this system in Section 3.2.2,
also compare Appendix B. In complete analogy to the case

Figure 3.18: Case n = 2

where n = 1, if u1 and u2 denote the deviations of the left
and right air masses from equilibrium respectively, then we
get the equations of motion

(
M
3 ü1 =°3K (2u1 °u2) ,

M
3 ü2 =°3K (2u2 °u1) .

From these, we immediately get the characteristic oscillations
(also see Figure 3.16) and their corresponding frequencies

1. u1 = u2:

Mü1 =°9K u1 ) !1
2º = 3

2º

q
K
M º 0.477

q
K
M ;

2. u1 =°u2:

Mü1 =°27K u1 ) !2
2º = 3

p
3

2º

q
K
M º 0.827

q
K
M .

Comparing !1
2º with f0 = 0.5

q
K
M , we see that the approxima-

tion has improved. We also recover the next harmonic, even

though the distance between !2
2º and f1 = 1.0

q
K
M is still quite

large.

Case n = 3 This is our first serious encounter with a system of 3
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degrees of freedom. We follow the same strategy as before. If

Figure 3.19: Case n = 3

u1, u2 and u3 are the deviations from the equilibrium of the
left, middle and right masses, respectively, then the equations
of motion are

8
>><
>>:

M
4 ü1 =°4K (2u1 °u2),

M
4 ü2 =°4K (2u2 °u1 °u3),

M
4 ü3 =°4K (2u3 °u2).

Also here, we can compute the characteristic oscillations (also
see Figure 3.16) and their frequencies:

1. u1 = u3, u2 =
p

2u1:

Mü1 =°16(2°
p

2)K u1 ) !1
2º = 2

p
2°

p
2

º

q
K
M º 0.487

q
K
M ;

2. u1 =°u3, u2 = 0:

Mü1 =°32K u1 ) !2
2º = 2

p
2

º

q
K
M º 0.900

q
K
M ;

3. u1 = u3, u2 =°
p

2u1:

Mü1 =°16(2+
p

2)K u1 ) !3
2º = 2

p
2+

p
2

º

q
K
M º 1.176

q
K
M .

Let us compare these with the fundamental and the first har-
monics. Both !1

2º and !2
2º respectively provide better approxi-

mations of f0 = 0.5
q

K
M and f1 = 1.0

q
K
M with respect to the

case n = 2. We also recover the harmonic f2 = 1.5
q

K
M even

though !3
2º = 1.176

q
K
M is still a rather poor approximation.
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On the length L of the organ pipe. We now come to the discus-
sion of the length L of the organ pipe as announced in Remark 24,
noting that L is not explicitly showing in the expression K

M . To solve
this problem we first introduce some new constants.

So, if L is the length of the pipe, we further introduceæ as the area of
its cross-section, Ω as the density (specific weight) of the air in the
pipe and ∑ the “stiffness constant” of a pipe of unit length and unit
cross-section area.

Then the mass of the air in the pipe is given by the volume of the
pipe, so area of the cross-section times the length, multiplied by
the air density: M = æLΩ. Physical considerations also show that
K = æ∑

L . While this is harder to justify without additional knowledge,
we can understand this as follows: we already said that the stiffness
constant K is the return force of the air column in the pipe while
being “pressed” or “stretched”. Then the pressure difference will de-
pend on the “stiffness” of the gas times the area of the cross-section
of the pipe which determines how much air can be “pressed” or
“stretched”, but is inversely proportional to the length of the pipe,
which provides the available space for the air to be “pressed” or
“stretched”.

The first identity is quite obvious and the second follows by a similar
reasoning as the one used above when determining the spring con-
stant of the springs in the approximation with n masses and n +1
springs. It then follows that K

M = 1
L2

∑
Ω , so that, for example, the fun-

damental becomes

f0 =
1

2L

s
∑

Ω
. (3.3)

Note that æ does not appear in (3.3). Moreover, the role of L may
now become clear: doubling it gives a halving of the fundamen-
tal frequency and thus a reduction of the fundamental by 1 octave.
Hence the classical custom of dividing organ registers into 2-foot,

107



3. Oscillations in daily life

4-foot, 8-foot, 16-foot, and 32-foot registers. Here, the number of
feet stands for the length of the longest pipe in that register. Here
the fundamental is always one octave lower than in the previous
register.

Towards a partial differential equation

Let us further speculate for a while about our approach to the organ
pipe by an n degrees of freedom system. As before, let u1,u2, . . . ,un

Figure 3.20: Case of arbitrary n

denote the deviation of the n masses from their equilibrium. The
usual reasoning, completely analog to the case n = 3, leads to the
equations of motion

8
>><
>>:

M
n+1 ü1 =°(n +1)K (2u1 °u2),

M
n+1 ü j =°(n +1)K (2u j °u j°1 °u j+1), 2 ∑ j ∑ n °1,

M
n+1 ün =°(n +1)K (2un °un°1) ,

compare the above case n = 3. We are no longer concerned with
computing the characteristic frequencies !1 < !2 < ·· · < !n , but
instead, we want to arrive at the equation of motion of the continu-
ous system through an infinitesimal consideration. Let x = j L

n+1 and

Figure 3.21: Infinitesimal consideration
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¢x = L
n+1 . Then, for 2 ∑ j ∑ n °1, the j th mass has position x and is

surrounded by the ( j °1)th and ( j +1)th masses respectively at the
positions x °¢x and x +¢x. Then the equation of motion of the j th

mass reads as

Mü j =°(n +1)2K (2u j °u j°1 °u j+1)

= (n +1)2K [(u j+1 °u j )° (u j °u j°1)] . (3.4)

With a slight abuse of notation, we write:

u(x) = u j , u(x °¢x) = u j°1, and u(x +¢x) = u j+1

and observe that L = (n+1)¢x. The right hand side of equation (3.4)
then can be rewritten as

(n +1)2K [(u j+1 °u j )° (u j °u j°1)]

= L2K
(¢x)2 [(u(x +¢x)°u(x))° (u(x)°u(x °¢x))]

= L2K
¢x

∑
u(x +¢x)°u(x)

¢x
° u(x)°u(x °¢x)

¢x

∏

º L2K
¢x

∑
du
d x

µ
x + ¢x

2

∂
° du

d x

µ
x ° ¢x

2

∂∏

º L2K
d 2u
d x2 (x) .

In the transitions º we approximate the expression by a differential
quotient:

du
d x

(x) = lim
¢x!0

u(x +¢x)°u(x)
¢x

,

so as ¢x becomes smaller, the fraction on the right hand side be-
comes closer to the derivative of u at points in the small interval
[x, x +¢x]. For convenience we use it to approximate the middle
point x + ¢x

2 . The second approximation is then justified in a simi-
lar way by observing that the second derivative of u is the derivative
of its derivative, and thus

d 2u
d x2 (x) = lim

¢x!0

du
d x

°
x + ¢x

2

¢
° du

d x

°
x ° ¢x

2

¢

¢x
.
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Compare with the infinitesimal considerations of Section 1.3.1. Since
the intervals of air mass get smaller as n increases, this approxima-
tion becomes more precise as n gets larger. Gradually u has become
a function of x, while at the same time, u is also still a function of
the time t . As in the introductory treatment of the vibrating string
we write u = u(t , x). Now, we change slightly the notation, writing

@2u
@x2 instead of

d2u
dx2 (= u00) and

@2u
@t 2 instead of

d2u
dt 2 (= ü),

and speak about partial derivatives of u with respect to t and x. In
summary, we have arrived at the equation of motion

M
@2u
@t 2 = L2K

@2u
@x2 ,

or, using the constants introduced earlier,

@2u
@t 2 = ∑

Ω

@2u
@x2 . (3.5)

This is a so-called partial differential equation. The fact that the
pipe is closed at both ends is expressed by the boundary conditions

u(t ,0) ¥ 0, u(t ,L) ¥ 0.

Equation (3.5) is known as a wave equation. The reason for this is
that for a suitably chosen positive number v , all solutions have the
form

u(t , x) = g (x + v t ) and u(t , x) = g (x ° v t ).

Here g is a (rather) arbitrary function, which has to be chosen in
agreement with the boundary conditions, which are generally dif-
ferent from problem to problem. See below for more details. A so-
lution of the above form is called a traveling wave. Why would one
have chosen this name? The number v is called the (wave) propa-
gation speed or phase speed. Justify this (first) name as well. In our
case, v =

q
∑
Ω and v is exactly the speed of sound. Let us examine

the above in more detail.
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3.3. Vibrations of continuous media

Figure 3.22: Each curve represents a snapshot of a traveling wave g (x ° v t )
at a fixed time, respectively t = 0 and t = 1, showing how the wave moves to
the right with speed v.

First, we discuss the fact that necessarily v =
q

∑
Ω . This can be seen

by substituting the traveling wave u(t , x) = g (x ± v t ) in the wave
equation. By the chain rule

@2u
@t 2 = v2g 00 and

@2u
@x2 = g 00 ,

which reduces the wave equation to

v2g 00 = ∑

Ω
g 00.

The latter equation, with the unknown function g , then is soluble
exactly when v2 = ∑

Ω .

It may now be clear that traveling waves with propagation speed
v =

q
∑
Ω are indeed solutions of the wave equation. Our second ob-

servation is that sums (superpositions) of such traveling wave so-
lutions are again solutions of the wave equation themselves. (This
has to do with the linearity of the differential equation, also see the
analogous comments in Section 3.2). So we find that for (rather)
arbitrary functions g1 and g2

u(t , x) = g1(x ° v t )+ g2(x + v t ) (3.6)

satisfies the wave equation. The word “rather”, which has been used
already twice, refers to the differentiability conditions that the rel-
evant functions (g or g1 and g2) must satisfy. It can be shown that,
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apart from this issue, equation (3.6) represents the most general so-
lution of the wave equation. For further background see [122].

Back to the organ pipe. In the above discussion, we disregarded
the boundary. Now let us consider solutions of the above general
type (3.6) that also satisfy the boundary conditions u(t ,0) ¥ 0 ¥ u(t ,L).
For this purpose, we first take the solutions

g1(x) = 1
2 cos

µ
kº
L

x
∂

, g2 =°g1, k = 1,2,3, . . .

then we obtain

uk (t , x) = 1
2

cos
µ

kº
L

(x ° v t )
∂
° 1

2
cos

µ
kº
L

(x + v t )
∂

= 1
2

cos
µ

kº
L

x
∂

cos
µ

kº
L

(°v t )
∂
° 1

2
sin

µ
kº
L

x
∂

sin
µ

kº
L

(°v t )
∂

° 1
2

cos
µ

kº
L

x
∂

cos
µ

kº
L

v t
∂
+ 1

2
sin

µ
kº
L

v t
∂

sin
µ

kº
L

v t
∂

= sin
µ

kº
L

x
∂

sin
µ

kº
L

v t
∂

, k = 1,2,3, . . . .

If, on the other hand, we choose

g1(x) = 1
2 sin

µ
kº
L

x
∂

, g2 = g1, k = 1,2,3, . . . ,

and by a computation similar to the one above, we obtain

uk (t , x) = sin
µ

kº
L

x
∂

cos
µ

kº
L

v t
∂

, k = 1,2,3, . . . .

You can check that the boundary conditions are satisfied for both of
these choices of uk . Such a solution uk is often called kth harmonic;
To understand the reasons for such a name, also see the remarks
in Section 1.3.1. The first harmonics form the fundamental of the
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pipe, while for k ∏ 2 the kth harmonic forms the (k °1)th overtone.
To elaborate a bit more on this, we define

∏k = 2L
k

and !k = kº
L

v, k = 1,2,3, . . . ,

and obtain

uk (t , x) =

8
<
:

sin
≥

2º
∏k

x
¥

sin(!k t )

sin
≥

2º
∏k

x
¥

cos(!k t )
k = 1,2,3, . . . .

Now observe that fk°1 = !k
2º is the frequency of oscillation of the

air particles in the solutions uk . The constant ∏k is called wave-
length of the solution: the larger k, the shorter the wavelength and
the higher the frequency (pitch) of the corresponding tone. Intu-
itively, sound waves all travel at about the same speed, the speed of
sound, and the wavelength measures the distance between consec-
utive ’maxima’ of the wave: in the same time interval, waves with
a shorter wavelength will reach your ear more often than the ones
with a longer wavelength, thereby leading to a higher pitch.

Before we started to discretize the organ pipe, we observed that the
tone you hear is a combination of the fundamental and the over-
tones. Mathematically, this means that any solution u(t , x) can be
written as an (infinite) sum, or series,

u(t , x) =
1X

k=1
sin

µ
2º
∏k

x
∂

(ak sin(!k t )+bk cos(!k t )) ,

for certain numbers a1,b1, a2,b2, . . . called amplitudes. These am-
plitudes determine the timbre of the tone.

Conclusive digression and questions. How long is the pipe in
terms of the wavelength ∏1 of the fundamental? Recalling that v
denotes the speed of sound, check that v = fk°1∏k for all k = 1,2, . . .
and give a simple interpretation of this formula.
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Earlier we said that real organ pipes are open at at least one end.
Consider the case of a pipe that is open at exactly one end: this is
where the air is blown on, the other end is “covered”. The equation
of motion is again

@2u
@t 2 = v2 @

2u
@x2 , v2 = ∑

Ω
,

but now the boundary conditions are

u(t ,0) ¥ 0 and
@u
@x

(t ,L) = 0,

where x = L is the open end. Treat this problem in analogy to this
chapter. What are the differences with respect to the above deriva-
tion? Finally, consider a possible discretization of the semi-open
pipe.

3.3.2. Strings, beams, etc.

The organ pipe is an illustrative example of all kinds of vibrations,
e.g., longitudinal vibrations of an elastic rod, but also of transverse
string vibrations and even, albeit as a rough approximation, trans-
verse ship vibrations, where the idea that a ship is a rigid body has
to be abandoned; compare with the Sections 3.1.2 and 3.2.3.

First we return to the string, also see the introduction to this chap-
ter. In the discretization, we replace the string by a finite number
of points of equal mass, connected by identical, massless springs.
The difference with the organ pipe is that now the masses may only
move transversely, i.e., perpendicular to the line connecting them
when they are at rest, see Figure 3.23.

We can literally repeat the story about fundamental, overtones and
characteristic oscillations that we developed for the organ pipe and
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Figure 3.23: A discretized string

Figure 3.24: Characteristic oscillations of a discretized string for different
values of n
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summarize the result in Figure 3.24. Although the computations of
these characteristic oscillations are somewhat more involved than
for the organ pipe, there is no mathematical difference between the
two situations.

If for an arbitrary time t , the deviation of the string is given by the
function x 7! u(t , x) as indicated in the introduction, then the equa-
tion of motion is again the wave equation

@2u
@t 2 = v2 @

2u
@x2 ,

where now v2 = s/Ω. Here s is the tension of the string and Ω the
mass density. If the string has length L (in the introduction we took
L = 1), then the boundary conditions are u(t ,0) = 0 = u(t ,L). Com-
pare this with our treatment of the organ pipe: both ends of the
string are fixed. We can now repeat the computations from Sec-
tion 3.3.1. Graphs of the functions x 7! un(t , x), for t fixed and
n = 1,2 and 3 are depicted in Figure 3.24. What are frequency f0

and wavelength ∏1 of the fundamental? Note that, in principle, the
waves in the string propagate at a speed different from the sound
waves in air.

Next we turn to the oscillations of a boat. The analysis is, at least in
principle, no different to the string. See Figure 3.25.

Bars or beams containing longitudinal or transverse vibrations can
also be treated entirely according to the above recipe. The assump-
tion is always that there is only one space variable at stake. Two-
dimensional continua such as plates and shells like the floor of a
bridge or the wings and body of an airplane, follow an analogous
albeit somewhat more complicated theory. Discretizations always
play an important role in both practical computations and more
theoretical considerations.

Remark 25. In practice, it is often not enough to rely solely on com-
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Figure 3.25: Oscillations of a boat

putations, however accurate. This is because we are always work-
ing within a model, in which all kinds of more or less essential mat-
ters are not included; compare remarks made earlier in Section 1.1.5
and in the introduction to the present chapter. These often cannot
be included in the model for mainly two reasons: Firstly, because
certain effects are not known well enough, e.g., precise effects of
energy losses due to something like friction. Secondly, because oth-
erwise the model becomes unmanageably complicated, e.g., due to
certain nonlinear effects.

In many cases one has to resort to experimental data. In some cases
such data can be obtained using scaled models in, for example, a
wind tunnel or gutter. Often, however, such data only become avail-
able when the construction in question (e.g. a ship) has already
been completely built. In the latter case, constructive retrospective
changes, the desirability of which is determined based on measure-
ments, can not always be realized or only at very high costs.

117



3. Oscillations in daily life

3.3.3. Other vibrational phenomena

Finally, in this brief section we discuss several different oscillatory
phenomena that everyone has likely experienced in real life. We
only sketch the overarching ideas and the keywords for further in-
vestigation of the interested reader. We also use a less rigourous
mathematical style and recommend you to consult additional physics
books, e.g., the Feynman Lecture Notes [69] or Minnaert [111].

Sound and light

We already encountered sound as an air vibration extensively in
Section 3.3.1 concerning the organ pipe. There we only dealt with
one spatial variable but in general, there is a three-dimensional spa-
tial continuum to deal with. Each of us is probably familiar with
phenomena associated with the wave character of sound: we only
mention interference and the Doppler effect.

Interference and the Doppler effect. Interference phenomena
arise from the superposition of two or more waves: we have already
encountered sound beats in Section 3.2.2. The superposition leads
to mutual extinction or amplification of the waves. Spectacular ex-
amples of amplification can be met in the well-known whisper gal-
leries, etc. Moreover, blind spots in concert halls can be understood
in terms of destructive interference.

Doppler phenomena arise from frequency changes due to relative
motions of the sound source relative to the observer. Think of the
bell of the level crossing, which rings higher for the railway pas-
senger when the train approaches the crossing and lower when the
train moves away from it. Or think of the change in pitch of the siren
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3.3. Vibrations of continuous media

of a police car that passes by when you are standing on a sidewalk.

Remark 26. 1. It is less evident that light also has a wave charac-
ter. In this context, there is a famous historical controversy in
which already Huygens and Newton were involved. Roughly
speaking, the former proposed a wave theory and the latter
a particle theory. Only in the 19th century, Maxwell came up
with a theory in which light is understood as an electromag-
netic wave phenomenon, thereby providing a physical justi-
fication of Huygens’s idea. In the 20 th century, quantum me-
chanics has finally settled the dispute by showing that light
has a dual nature exhibiting both wave and particle aspects.

2. A problem with all this is the following. If light is a wave phe-
nomenon, then what is it that exactly vibrates? For a long
time, physicists have thought that there is a medium in space,
called ether, in which the light waves move. Nowadays we live
in an etherless era and probably this will remain so.

Interestingly, in connection with radio and television waves,
other special cases of Maxwell’s electromagnetism, people still
speak of the ether in their colloquial language. However, whether
or not such a thing as this ether exists, leaves mathematics in-
different. The only important thing is that in Maxwell’s theory
the components of the electromagnetic field satisfy the equa-
tion

@2u
@t 2 = c2

µ
@2u
@x2 + @2u

@y2 + @2u
@z2

∂
,

in which a careful reader will immediately recognize the wave
equation. Here x, y , and z are the space variables and c is the
speed of light.

The wave character of electromagnetism for instance can be ob-
served in fading, a phenomenon in which the strength and quality
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3. Oscillations in daily life

of a radio signal fluctuate over time and distance. Since the fluctu-
ation is quite irregular it is often modeled in a stochastic way.

A large number of the examples given below could have not been
discovered until the 19th century.

Miscellaneous comments. We conclude this section with a few
comments on daily life phenomena that can be explained in terms
of the above.

1. Interference of light waves may explain well the changing color
patterns in oil stains on water. Also the so-called fading in
short-wave receivers can be understood as an interference phe-
nomenon: radio waves of the same wavelength reach the ob-
server along paths of different length. What one hears is the
alteration of extinction and amplification of the sound com-
ing from the radio, just as in the case of beats.

2. The Doppler effect can also serve to explain the so-called red-
shift observed in the radiation that reaches us from the dis-
tant, expanding universe.

3. In wave theory, dispersion means dependence of the propa-
gation speed on the wavelength. The refraction of white light
through a prism and the associated decomposition in all col-
ors is a well-known phenomenon that can be explained in
terms of dispersion. Replacing the prism with a water droplet
similarly explains the phenomenon of a rainbow. Compare
with Arnold [9].

4. In the world of radio and television, the concept of resonance
is also extremely important, compare with Chapter 2: the in-
coming electromagnetic radiation forms the external drive of
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3.4. Relaxation oscillations

the electric circuit constructed inside a receiver. The reso-
nance peaks then make it possible to select a certain wave-
length range upon reception: this is exactly what one does if
one tunes the receiver to a particular station.

5. Finally, we also mention the polarization phenomenon that is
being used in sunglasses and LCD screens. This has to do with
the so-called transversality of the light waves. When waves
pass through a material with a certain “crystalline” structure,
the vibrations are extinguished in all directions except one,
thus obtaining polarized light.

Water waves

On water surface waves we will be brief and just refer to Minnaert’s
The Nature of Light and Colour in the Open Air [111]. It should be
noted that this treatment is more involved than with air vibrations,
due to the so-called surface tension. It is also worth mentioning that
in [111] all known wave phenomena mentioned above are beau-
tifully illustrated by means of water waves; this includes the phe-
nomenon of radiation pressure. The latter has been used in 2010
by the JAXA IKAROS mission for a new type of solar propulsion in
space travel: the solar sail. A large, thin sail that is propelled by the
radiation pressure of sunlight.

3.4. Relaxation oscillations

This chapter is concluded by briefly describing relaxation oscilla-
tions, a group of oscillation phenomena that you may encounter
often in everyday life. Here think of the sound of a fiddled violin
string, of a chamois that “squeaks” over a glass pane or a “singing”
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3. Oscillations in daily life

wine glass, or a piece of chalk that “crunches” on a blackboard, but
also creaking doors and vibrations of propeller shafts in ships. The
physics of such oscillations is quite involved and is still the subject
of active research. Considerations about energy and forces are cen-
tral in their mathematical understanding, and dry friction plays a
major role, compare with Section 2.1.

Mathematically speaking, relaxation oscillations can be character-
ized by saying that deviations as a function of time should alternate
periods of slow and fast variation. Figure 3.26 presents two cases:

Figure 3.26: Relaxation oscillations

we consider a variable x as a function of time t . Where does x = x(t )
vary slowly and where fast? A proper mathematical description of
relaxation oscillations and their analysis is beyond the scope of this
book but we will try to give you some intuition by some concrete
examples.

The Tantalus cup. The Tantalus cup or
Pythagorean cup consists of a vessel to which
water is continuously added from a tap. A
tube that can act as a siphon passes through
the bottom of the vessel as indicated in the
figure on the right. Let h denote the height of
the water level in the vessel, then h periodi-
cally varies between two extreme values. The
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3.4. Relaxation oscillations

lowest value of h is slightly below h = 0, see the figure. From this
state, h slowly increases as a function of time t : i.e. the vessel is
slowly filled with tap water.

Once the water level increases slightly above the height h = h0, the
pipe is completely filled with water and starts acting as a siphon.
The vessel now empties quickly to slightly below h = 0; with some
goodwill, you could call this phase of motion “relaxing”: the sys-
tem gives up quite suddenly its surplus of potential energy. Then h
slowly increases again, etc.

Figure 3.27: Relaxation oscillations of the Tantalus cup

In Figure 3.27 you see h as a function of the time t . (We note how-
ever that the dynamics of h above the level h0 is more complicated
than shown here.) Similar sawtooth graphs are common in elec-
tronic devices, such as television sets or mobile phones. In such
systems, the underlying physics is clear, at least in principle. How-
ever, this is not the case at all in the following example.

Heart beat. Consider the motion of a muscle fiber in the human
heart. The underlying physiology is particularly complex, but here
we are looking for a “simple” mathematical model with the same
qualitative properties as that of the motion of the muscle fiber. The
properties that we have in mind are:
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3. Oscillations in daily life

1. The existence of a more or less stable equilibrium, a state correspon-
ding to the so-called diastole, in which the heart muscle is re-
laxed;

2. For some electrochemical variable x, there exist a threshold
value x = x1, such that once x > x1 an action is triggered:
the heart muscle contracts, this is the so-called systole. The
excitation of the muscle fiber caused by an electromagnetic
pulse emitted by a pacemaker, forces it to exceed the thresh-
old value x = x1;

3. There is a jump back to the equilibrium state, the heart mus-
cle relaxes again.

If y denotes the length of our muscle fiber, Figure 3.28 schemati-
cally shows what the above properties mean. Here x0 and y0 are the
values of x and y in the diastolic state. The contraction and relax-
ation are fast motions of y , which are alternated with slow motions
in diastole and systole. The dynamics depicted in Figure 3.28 can

x

y

systole

diastole

contraction

relaxation

(length of muscle fiber)

(electrochem
ical control)

x0

y
0

pacemaker

Figure 3.28: Relaxation oscillations for the muscle fiber of the heart

be described rather explicitly using the Van der Pol–Liénard differ-
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3.5. An exercise on Hooke’s n–body problem

ential equations
(

ẋ = y ° y0

≤ẏ =°(x ° y + y3)
.

Here, y0 < 1p
3

and ≤> 0 is a small constant. Give a (rough) sketch of
y as a function of the time t . Compare this with Exercise 2.6.5 and
the discussion in the solutions in Appendix E.2.5.

Remark 27. The latter example stems from E.C. Zeeman’s Catastro-
phe Theory [165, Chapter 3]. Zeeman also shows that the above dif-
ferential equations to some extent form the simplest mathematical
model having the properties 1, 2, and 3 mentioned above. This the-
ory has been developed from the 1970s on, also compare with [129,
7]. The latter of these references presents more recent develop-
ments, including the more general singularity theory. We recom-
mend the interested reader to consult these references in order to
know more.

The pacemaker of the heartbeat is part of the autonomous nervous
system. There exists a more general theory of neuronal activity where
increases in voltage can produce cascades of spikes. The leading
Hodgkin-Huxley model [87] also lies at the basis of Zeeman analy-
sis [165, Chapter 3].

3.5. An exercise on Hooke’s n–body
problem

Lissajous figures appear in many different problems. As an inter-
esting example we report here two problems by Bottema, namely
problem 673 [24] and problem 683 [25].
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3. Oscillations in daily life

Part 1. A particle P of unit mass moves in the plane of a given
triangle A1 A2 A3. The force Fi on P is directed towards Ai and is
equal to kPAi for i = 1,2,3, where k is a positive constant and PAi

denotes the distance between P and Ai . Prove that there is a motion
of P the path of which coincides with the Steiner ellipse S of A1 A2 A3

(the ellipse S that passes through the vertices and whose tangent at
any vertex is parallel to the opposite side). Show moreover that P
covers the three arcs A1 A2, A2 A3, and A3 A1 of S in equal time.

Let us look now at what happens if we allow n points to move under
the influence of a similar mutual attraction. In other words, let us
investigate the motion under universal Hookian gravitation.

Part 2. The particles Ai with masses mi (i = 1,2, . . . ,n) move in
three-dimensional space. Any two distinct particles Ai , A j attract
each other by the force F = k2mi m j di , j , where k > 0 and di , j de-
notes the distance Ai A j . We suppose that the motions of Ai and
A j are not disturbed if they pass simultaneously through the same
point. Determine the general motion of the particles.
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Preface to the appendices

The examples chosen throughout the book are mostly from the more
conceivable classical physics. However, complex wave functions
that harbor a probability density, as these appear in quantum phy-
sics, are not so very conceivable. Nevertheless, the mathematics de-
veloped here often also turns out to be useful in quantum physical
contexts. For instance, considerations on the Mathieu equation in
Chapter 2 are useful in Schrödinger’s wave theory as demonstrated
in Appendix C below. And the mathematics of the organ pipe of
Chapter 3 happens to coincide with that of a quantum particle in a
box.

As mentioned already in the Preamble, the appendices close with
a scholium. Here the authors often turn to more advanced topics,
especially in the concluding remarks, for details mostly referring to
the literature. The curious reader may well regard this as an invita-
tion to this literature.

The authors
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A. Johann Bernoulli’s brachistochrone

In the Preamble we mentioned several problems put forward by
Huygens, among which to find the isochronous and the tautochro-
nous curve. We already claimed that nowadays the verification that
the cycloid solves both problems has become quite elementary, com-
pare Exercises 1.6.7 and 1.6.8. We also mentioned the brachistochro-
ne problem put forward by Johann Bernoulli, that is, to find the
curve of swiftest decent, i.e., with the shortest “down time”. Sur-
prisingly, here the cycloid showed up again. Since this is a slightly
more difficult exercise, we here include its solution as an appendix.
Although the problem was formulated in the mechanical terms of
sliding beads (or rolling marbles), Bernoulli added optics to the pic-
ture using the Fermat Principle and Snell’s Law, thereby obtaining
the desired curve as a light ray!

Johann Bernoulli was born in Basel (Switzerland) in 1667 and moved
to Groningen in 1695 and back to Basel in 1705, where he died in
1748. Among others, Christiaan Huygens recommended Bernoulli’s
appointment in Groningen and, like Huygens, he had a great inter-
national reputation. From 1699 on he was Associé Étranger of the
Académie des Sciences in Paris and from 1712 on he was Fellow
of the Royal Society in London. He became also a member of the
Academies in Bologna, Berlin, and Saint Petersburg. His most well-
known students are his son Daniel (1700-1782) and Leonhard Euler
(1707-1783). For an extensive historical account, we refer to Van
Maanen [103].

The brachistochrone problem goes as follows. Given two points A
and B in a vertical plane, with A higher than B , what is the wire
profile along which a bead slides from A to B in the shortest time?
The motion takes place under a constant vertical gravitation and
there is no friction. The present story largely follows [32, Section
4.3.2] and is mimicking Bernoulli’s solution [21].
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A.1. Geometric optics

Figure A.1: The brachistochrone problem: for which profile does the bead
M slide in the shortest possible time from A to B? From Opera Johannis
Bernoullii, 1742 [21]

A.1. Geometric optics

In analogy with Chapter 3, we are going to discretize the continuum,
first dividing it in two layers, and later on in an increasing number
of equally thick layers.

Throughout our considerations we restrict to a so-called flat earth
atmosphere, that is a model in which the refraction index of the air
only depends on the height, where we moreover constrain the mo-
tion to one vertical plane. The horizontal coordinate is denoted x
and the vertical coordinate y . The velocity of light is denoted v , de-
pending on the position. We assume that v = v(y) only depends on
the vertical coordinate y . The refraction index is defined as

n(y) := c
v(y)

,

where c is the velocity of light in vacuo. For simplicity we take c =
1.
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A. Johann Bernoulli’s brachistochrone

Definition 1 (Fermat Principle). Given two points A and B then a
light ray between A and B is the path that takes the shortest time.

This definition asks for minimality of the traveling time, but often
we only ask this time to be extremal and speak of the weak Fermat
Principle. One of the prime examples is the case where A and B
are the focal points of an ellipse, where the light ray reflects in the
elliptic curve. In that case, the time needed is constant.

A.1.1. Fermat implies Snell

We divide the atmosphere into two horizontal layers numbered 1
and 2, separated by the common boundary y = 0, see Figure A.2.
The angles with the normal to the boundary are denoted by Æ1 for
y ∏ 0 and Æ2 for y ∑ 0. The refraction indices are n1 for y > 0 and n2

for y < 0, with corresponding propagation velocities v1 and v2.

We now formulate

Theorem 2 (Snell’s Law). Under the above circumstances assume
that A lies in the upper half plane y > 0, C on the boundary y = 0 and
B in the lower half plane y < 0. Then the broken straight line AC B is
a light ray according to the weak Fermat Principle if and only if

n1 sinÆ1 = n2 sinÆ2 .

Proof. Let x = xC indicate the position of C on the line y = 0 that
separates both layers. Let tAC denote the time for the light ray needed
to travel from A to C and tC B the time needed to travel form C to
B . We then have to find an extremum of tAC + tC B . The facts that
|A°C | = tAC · v1 and that v1 = 1/n1 yield that

tAC = n1|A°C | .
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Figure A.2: Snell’s law follows from the Fermat Principle

By the Pythagorean Theorem we know that

|A°C | =
p

x2 +b2 so tAC = n1

p
x2 +b2 .

Differentiation with respect to x then gives

d
dx

tAC (x) = n1x
p

x2 +b2
= n1 sinÆ1 .

Analogously we find

d
dx

tC B (x) =° n2(a °x)
p

(a °x)2 + c2
= n2 sinÆ2 ,

again see Figure A.2. We may conclude that

d
dx

(tAC (x)+ tBC (x)) = 0

if and only if
n1 sinÆ1 = n2 sinÆ2 ,

as was to be proven.
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A. Johann Bernoulli’s brachistochrone

Remark 28. 1. Reflections in the boundary layer are easily in-
corporated in this story [32], but since we only consider mo-
tions that are monotonic in terms of y 7! x(y), for simplicity
we exclude reflections.

2. In this case the extremum also is a minimum as you can verify
by inspecting the second derivative.

3. Leibniz [99] already essentially gave this proof in 1684.

A.1.2. A conservation law

In this subsection instead of two layers, we take many of them in an
increasing number, so discretizing the continuum, see Figure A.3.
In fact, as boundaries we take equidistant horizontal lines separat-
ing the layers 1,2,3, . . . , N where in each layer the speed of light is
constant. In layer number j the refraction index is n j and the an-
gles at the lower boundary of layer j with the vertical direction are
Æ j from above and Æ0

j from below (1 ∑ j ∑ N ).

As a direct consequence of Theorem 2 we have

Corollary 1 (Conservation Law). Under the above circumstances a
broken straight line from A to B is a light ray according to the weak
Fermat Principle if and only if

n j sinÆ j = n j+1 sinÆ j+1 (1 ∑ j ∑ N °1) .

Proof. According to Theorem 2 always

n j sinÆ j = n j+1 sinÆ0
j ,
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Figure A.3: Bernoulli’s optical set-up: the continuous medium is discretized
into layers of constant propagation velocity.

while from Euclidean geometry it is known that always

Æ0
j =Æ j+1 .

The assertion follows directly from this.

We may consider Æ j as a parameter along the light ray, which in the
continuous limit for N !1 is just calledÆ=Æ(y): the inclination of
the ray. We have thus obtained a quantity that is conserved during
the propagation of the light:

S = n sinÆ . (A.1)

Remark 29. 1. As said earlier we exclude reflections, otherwise
Æ(y) would be multivalued. The light ray is pointing down,
therefore the map y 7! x(y) is monotonically decreasing and
we have

dx
dy

=° tanÆ
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2. Note that the form of the light ray is completely determined
by the value of S. The propagation along the ray is governed
by the refraction index n = 1/v.

3. The conservation of S is related to the invariance of the prob-
lem under horizontal translations. In fact, roughly speaking,
any continuous symmetry of a variational problem is associ-
ated to a conserved quantity. This deep result, which is of a
sparkling elegance and which forms a cornerstone of mod-
ern physics, is known as Noether’s Theorem [5, 120]. Emmy
Noether (1882-1935), who proved this in 1918, was one of the
most important mathematicians of the past century, often over-
looked in history books [132, 133]. Her contributions, which
span a large range of mathematical domains, include the de-
velopment of algebraic geometry, laying the foundation of mod-
ern algebra.

4. Snell’s law itself is still showing up in modern research, for
example, it was recently generalized to non-euclidean spaces
in order to describe certain problems in celestial mechanics
related to central mass galaxies [52, 53].

A.2. The brachistochrone as a light ray

Theorem 3 (The brachistochrone). Under the above circumstances,
the brachistochrone curve has the cycloidal form

x(Æ) = 1
4S2g

(2Æ° sin(2Æ))

y(Æ) = 1
4S2g

(°1+cos(2Æ)) ,

passing through A = (0,0) for Æ = 0 and where the constant S deter-
mines the scale of the curve such that it passes through B.
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Before giving a proof, we have some comments.

1. Referring back to Exercise 1.6.7, in this case the cycloid has
rolling angle '= 2Æ°º and radius R = 1/(4S2g ).

2. There are two conserved quantities. Apart from S, we have
the energy H of the motion in a constant gravitational field

H = 1
2 mv2(y)+mg y .

The refraction index n(y) = 1/v(y) can now be determined
as follows. Since we assume that the bead starts at a height
y = y0 at rest, v(y0) = 0. It then follows that during the entire
motion we have H = mg y0 and, in particular, H = 0 when tak-
ing y0 = 0. The corresponding falling speed therefore equals
v(y) =

p
°2g y , where y ∑ 0. The refraction index then is

n(y) = 1
p
°2g y

where y ∑ 0.

We now are ready to prove Theorem 3, more or less following
Bernoulli [21].

Proof. Since the motion is downward, we have dx/dy = ° tanÆ. In
this proof we use both the conserved quantities

S = n(y)sinÆ and H = 1
2 mv2(y)+mg y .

The desired profile will be of the form

(x(Æ), y(Æ)). (A.2)

where Æ is the inclination with respect to the y–direction. Since H
is constant, differentiating the latter of the two above formulæ we
get for all y

v 0(y) =° g
v(y)

. (A.3)
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Rewriting the former formula as sinÆ = Sv(y) and differentiating
with respect to Æ gives

cosÆ= Sv 0(y)
dy
dÆ

. (A.4)

With help of the formulæ (A.3) and (A.4) we can determine the deriva-
tives dy/dÆ and dx/dÆ for the paramatrized profile (A.2). First we
consider dy/dÆ:

dy
dÆ

(A.4)= cosÆ
Sv 0(y)

(A.5)

(A.3)= °v(y)
Sg

cosÆ

(A.1)= ° 1
2S2g

sin(2Æ) .

We can then use this expression and some trigonometric gymnas-
tics to determine the other derivative:

dx
dÆ

=° tanÆ
dy
dÆ

(A.5)= v(y)
Sg

sinÆ

(A.1)= ° 1
2S2g

(1°cos(2Æ)) .

Integration then gives

y(Æ) =Cy +
1

4S2g
cos(2Æ)

x(Æ) =Cx +
1

4S2g
(2Æ° sin(2Æ) ,

where we choose the constants of integration Cy and Cx in such a
way that x(0) = 0 = y(0), leading to Cy = °1/(4S2g ) and Cx = 0. So
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we end up with

x(Æ) = 1
4S2g

(2Æ° sin(2Æ))

y(Æ) = 1
4S2g

(°1+cos(2Æ))

as was to be proven.

A.3. Scholium

The cycloid has been a subject of general interest in the 17th cen-
tury, not just in relation to Huygens’ or Bernoulli’s problems, com-
pare [1, 3, 30, 31, 32, 79, 126, 159, 164]; in [106] the ‘much talked of’
curve is even compared to Helen of Troy.

As we mentioned, Johann Bernoulli put forth his brachistochrone
problem in 1696 in a contest published in the journal Acta Erudi-
torum [21]. One year later he published his solution in the same
journal. A number of his contemporaries quickly responded, New-
ton and Leibniz being two of them. In fact, Newton’s solution was
sent under a pseudonym but Bernoulli recognized the “lion by his
paw” (ex ungue leonem). For the mathematical details see Golds-
tine [77].

The brachistochrone problem and its solutions mark the birth of
the long and broad development of the Variational Principle, nowa-
days a cornerstone of many scientific disciplines. Publication of this
problem and a lot of related work has made Johann Bernoulli one of
the founding fathers of this development.

However, we note that in a modern Variational Calculus class the
brachistochrone problem is no more than an exercise, see e.g. [96,
Exercise 8.20]. For additional discussions see [76, 95, 143, 148].
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B. Small oscillations and the Foucault problem

We encountered small oscillations already several times, for instance
when linearizing the pendulum in Section 1.2, or when studying
beats in Section 3.2.2. In this section we come back to this by dis-
cussing the Foucault pendulum, where small oscillations will again
play an important role.

B.1. Beats revisited

There exists a general theory of small oscillations, formulated in
terms of linear algebra, for instance see Arnold [5, Section 23]. In-
stead of fully presenting the theory we illustrate it with the example
of beats, as roughly described in Section 3.2.2.

Figure B.1: Two coupled pendulums, compare Figure 3.6

As before, we consider two identical pendulums coupled by a spring.
The two deflections (x1, x2) describe the configuration of the sys-
tem, see Figure B.1. To describe the state of the system, we also have
to consider the velocities, ẋ1 and ẋ2, ending up with four variables
to work with. The equations of motion are then given by

ẍ1 =°x1 °2∑(x1 °x2) ,

ẍ2 =°x2 °2∑(x2 °x1) ,

where ∑ is the spring constant of the connection. Observe that we
already linearized the pendulum at its lower equilibrium. We are left
with a coupled system of differential equations and, as indicated in
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Section 3.2.2, we aim to decouple it by passing to suitable coordi-
nates.

The kinetic and potential energies of our linear system read

T = 1
2 (ẋ2

1 + ẋ2
2) and U = 1

2 (x2
1 +x2

2 +∑(x1 °x2)2) . (B.1)

As a small extension of the theory presented in Section 1.4 we now
have that

ẍ1 =° @U
@x1

and ẍ2 =° @U
@x2

. (B.2)

We invoke linear algebra by introducing the position and velocity
vectors

x =
µ

x1

x2

∂
and ẋ =

µ
ẋ1

ẋ2

∂

and reformulating the expressions for T and U as

T = 1
2 hẋ, ẋi and U = 1

2 hBx,xi,

where B is the matrix

B =
µ
1+∑ °∑
°∑ 1+∑

∂
. (B.3)

Here h·, ·i denotes the standard inner product

øµ
x1

x2

∂
,
µ

y1

y2

∂¿
:= x1 y1 +x2 y2 .

Any expression of the form U = hBx,xi where B is a real, symmet-
ric matrix, is called a quadratic form. The Spectral Theorem [88,
Theorem 2.5.6] states that B admits an orthonormal basis of eigen-
vectors and with respect to such a basis the matrix takes a diagonal
form, with the eigenvalues on its diagonal.
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B. Small oscillations and the Foucault problem

Remark 30. The Spectral Theorem is far more general and, in par-
ticular, holds for all real, symmetric n £n–matrices.

That is, in our particular case (B.3) there exists a 2£2 matrix C , such
that

D =C BC°1 =
µ
∏1 0
0 ∏2

∂
.

The eigenvalues ∏1 and ∏2 are given by the characteristic equation
det(B °∏ Id) = 0, and the eigenvectors in this case are unit vectors
along the diagonals of the (x1, x2)-plane. Here

Id =
µ
1 0
0 1

∂

denotes the 2£ 2–unit matrix. With a direct computation one can
find that ∏1 = 1 and ∏2 = 1+2∑, while the matrix C is given by

C = 1
p

2

µ
1 1
1 °1

∂
.

This means that y =C x takes the concrete form

y1 = 1p
2

(x1 +x2) and y2 = 1p
2

(x1 °x2) ,

already familiar from equation (3.1), see Figure B.2. Moreover, ki-
netic and potential energies now get the form

T = 1
2 hẏ, ẏi= 1

2 (ẏ2
1 + ẏ2

2) and

U = 1
2 hy,yi= 1

2 (y2
1 + y2

2) .

Referring back to (B.1) and (B.2), we can find the equations of mo-
tion in the new coordinates as

ÿ1 =°y1

ÿ2 =°(1+2∑)y1 ,

which now are uncoupled. As in Section 3.2.1 we speak of char-
acteristic oscillations of the coupled pendulum system and we call
!1 =

p
∏1 = 1 and !2 =

p
∏2 =

p
1+2∑ the characteristic frequen-

cies.
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B.1. Beats revisited

Figure B.2: Transformation of the coordinates by the matrix C ). The straight
lines correspond to the standard Euclidean coordinates x, and the skew lines
to the new coordinates y =C x.

Remark 31. 1. The matrix C is orthogonal in the sense that C°1 =
C T , which means that the transformation C respects the in-
ner product: in other words, it is an isometry.

2. The approach outlined above works for any symmetric ma-
trix B in any dimension and gives oscillations in the directions
where the eigenvalue ∏ is positive. We recall that the general
solution can be written as a linear combination of character-
istic motions.

A slightly more general case occurs when T = 1
2 hAẋ, ẋi, for a

symmetric matrix A that is assumed positive definite. Such A
defines a new inner product that can be normalized by choos-
ing an orthonormal basis and from then on the story runs as
above. For more details we refer to [5, Section 23] or [88, Chap-
ter 4, Problem 18].
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B. Small oscillations and the Foucault problem

3. The general theory is based on the Variational Principle, which
in the present case is completely covered by the formulæ (B.2).
For an elegant presentation of this theory, more details and
more applications we again refer to [5, Section 23].

B.2. The Foucault pendulum

In this section we discuss the Foucault pendulum, a spherical pen-
dulum that swings in one vertical plane; this plane itself rotates due
to the rotation of the earth. To make this idea more clear, suppose
we are setting up the pendulum precisely at the North Pole. In the
span of 24 hours the vertical plane, by inertia of the system that is in
complete harmony with the fixed stars, should rotate clockwise and
make a full turn: the earth just rotates underneath this grandiose
device. A success of this experiment would confirm the daily rota-
tion of the earth.

Remark 32. The vertical plane of the Foucault pendulum positioned
on the equator would not rotate at all. Can you explain why and can
you also find the amount of rotation in 24 hours as a function of the
latitude?

To understand what is going on we need to look more closely at the
spherical pendulum. In particular we have to move from cartesian
to spherical coordinates, see Figure B.3, and make use of the con-
cept of Taylor series. At the linear level we first meet small oscilla-
tions. If we include the quadratic terms we shall then encounter the
so-called spherical precession, a nonlinear effect that will turn out
to substantially complicate the Foucault experiment.
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B.2. The Foucault pendulum

Figure B.3: Configuration of a spherical pendulum in cartesian (left) and
spherical (right) coordinates

B.2.1. The spherical pendulum

In this section we investigate the dynamics of the spherical pendu-
lum near its south pole equilibrium. We take a cartesian coordinate
system (x, y, z), where the center of the sphere is at the origin and
the z-axis is vertical (pointing upward), see Figure B.3. Passing to
spherical coordinates

z = r cosµ (B.4)

x = r sinµcos'

y = r sinµ sin' ,

the lower equilibrium occurs at the south pole (x, y, z) = (0,0,°`),
corresponding to r = ` and µ =º.

The evolution (x(t ), y(t ), z(t )) in cartesian coordinates of the spher-
ical pendulum can be rewritten as an evolution in spherical coordi-
nates (r (t ),µ(t ),'(t )). Differentiating both sides of the above equa-
tions (B.4) with respect to time (applying the Chain Rule) then leads
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B. Small oscillations and the Foucault problem

to

ż = ṙ cosµ° r sinµ µ̇

ẋ = ṙ sinµcos'+ r cosµcos' µ̇° r sinµ sin' '̇

ẏ = ṙ sinµ sin'+ r cosµ sin' µ̇+ r sinµcos' '̇ .

Therefore, in analogy with the derivation of the pendulum in the
main corpus of the book, the kinetic and potential energy are given
by

T = 1
2 m(ẋ2 + ẏ2 + ż2) = 1

2 m`2µ̇2 + 1
2 m`2 sin2µ '̇2

and U = mg z = mg`cosµ .

We now turn to adapted cartesian coordinates that parametrize the
southern hemisphere and approximate the system near the south
pole’s equilibrium. To this end, we define coordinates (ª,¥) from the
polar coordinates ' and % = º°µ by ª = %cos',¥ = %sin'. These
just serve to simplify the equations, since they take the value (0,0) at
the south pole equilibrium point. Note that so the rotational sym-
metry of the problem is preserved.

Computational intermezzo A few computations are in order.

1. A first useful formula turns out to be

ª̇2 + ¥̇2 = %̇2 +%2'̇2 . (B.5)

To prove this we take derivatives

ª̇= %̇cos'°%sin''̇ and ¥̇= %̇sin'+%cos''̇ ,

after which squaring and summing the two equations gives
the desired result.

In the same spirit, we have

'̇= ¥̇ª° ª̇¥
ª2 +¥2 (B.6)
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B.2. The Foucault pendulum

which directly follows from formulæ like

'= arctan
¥

ª
.

2. In the approximation at the lower equilibrium we need the
first terms of the Taylor expansions for sine and cosine:

sin%= %° 1
6%

3 +O(%5) (B.7)

cos%= 1° 1
2%

2 + 1
24%

4 +O(%6) ,

see [4] or any other decent book on calculus.

B.2.2. Small oscillations

We first approximate to second order at the south pole using (B.7):

sin%º % and cos%º 1° 1
2%

2

from which we get approximately

T = 1
2 m`2(%̇2 +%2'̇2) and U =°mg`(1° 1

2%
2) ¥ 1

2 mg`%2 ,

where we also used that cosµ =°cos%. By formula (B.5) we find

T = 1
2 m`2(ª̇2 + ¥̇2) and U = 1

2 mg`(ª2 +¥2) ,

which, again by (B.2), corresponds to a linear system

ª̈=°g
`
ª

¥̈=°g
`
¥

of two uncoupled harmonic oscillators, in this case with equal (an-
gular) frequencies !=

p
g /`. Referring back to Remark 22 we con-

clude that the small oscillations consist of all possible Lissajous el-
lipses with the origin as center.
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B. Small oscillations and the Foucault problem

Remark 33. Notice that we don’t need the machinery of Section B.1.
Can you identify the matrices A and B here?

B.2.3. Spherical precession

Using one more term in the Taylor expansions (B.7)

sin%º %° 1
6%

3 and cos%º 1° 1
2%

2 + 1
24%

4

gives approximately

T = 1
2 m`2 °

%̇2 + (%° 1
6%

3)2'̇2¢

U =°mg`cos%¥ 1
2 mg`(%2 ° 1

12%
4) .

Simplifying further and working mod O (%6) we get

T = 1
2 m`2 °

%̇2 + (%2 ° 1
3%

4)'̇2¢

= 1
2 m`2(%̇2 +%2'̇2)+ 1

6%
4'̇2

U =°mg`cos%¥ 1
2 mg`%2 ° 1

6 mg`%4 ,

where we added the fourth-order terms to the former approxima-
tion. The fourth-order part of the kinetic energy T reads

1
6%

4'̇2 = 1
6 (¥̇ª° ª̇¥)2 ,

where we use formula (B.6). This term corresponds to a slow motion
in the '–direction, in other words, a rotation (= precession) of the
system, that roughly deforms any Lissajous ellipse into a rosette, see
Figure B.4 and B.5. Again compare Remark 22. This holds at least
when the ellipse does not degenerate to a straight line, in which case
we would have '̇¥ 0.
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B.2. The Foucault pendulum

Figure B.4: A trajectory of the Foucault pendulum clearly showing a spher-
ical precession

Figure B.5: Left: Lissajous ellipse for the linearization of a pendulum with
the same initial condition as the trajectory in Figure B.4 projected on the
(x, y)-plane; Right: the trajectory of Figure B.4 projected on the (x, y)-plane
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B. Small oscillations and the Foucault problem

B.3. Scholium

The spherical precession complicates the Foucault experiment, since
practically it is impossible to restrict the pendulum motion to one
vertical plane. In terms of the Lissajous figures, the ellipses, how-
ever narrow, do not completely degenerate to a straight line. This
means that the rotation of the pendulum ’plane’ may just as well
be affected by the precession as by the rotation of the earth. This is
probably the case with many of the Foucault pendulums – they do
actually exist! – all over the world.

A solution for this problem is to damp out the transversal motion
'̇ at the maximum of its swings. The physics Nobel laureate Heike
Kamerlingh Onnes doctorated in 1879 at Groningen University with
the thesis Nieuwe Bewijzen voor de Aswenteling der Aarde [94] under
the supervision of the mathematical physicist Rudolf Adriaan Mees.
In his dissertation, Kamerlingh Onnes designs an ingenious con-
struction, where a ring is mounted on the device that performs the
damping: the first functioning Focault pendulum. For background
information also see [45].

Remark 34. 1. Above we considered the spherical pendulum in
its own right, the detected spherical precession already casts
serious doubt on the Foucault experiment. In [94] however
a deeper understanding of the problem is gained by mount-
ing the spherical pendulum on the rotating earth, compare
Figure B.4, alongside a very careful experimental setup to test
the result.

An interesting mathematical explanation of Kamerlingh Onnes’
Focault pendulum and its proper mathematical understand-
ing can be found in [136].

2. One may wonder what happens when more terms in the Tay-
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B.3. Scholium

Figure B.6: Two drawings from Kamerlingh Onnes’s thesis [94]
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B. Small oscillations and the Foucault problem

lor expansions are included. It turns out that the harmonic
oscillator is very symmetric, in a sense that we will not make
more precise here. Then, introduction of the second term
discussed above is sufficient to break this symmetry and to
introduce the precession. Any other term in the expansion
will slightly change the precession effect, but will not substan-
tially change the qualitative picture as described here.

B.4. One more Hookian problem

The following exercise is also from Bottema [26].

In Euclidean 3-space, you are given three lines `i (i = 1,2,3) which
are all passing through the point O. The angle between any of the
two lines is Æ (0 < Æ < º/2). Three particles Pi of unit mass move
along the lines `i , respectively. Any two particles Pi ,P j (i 6= j ) at-
tract each other by the force k2 Pi P j , where k > 0 is a positive con-
stant and Pi P j denotes the distance between Pi and P j . Determine
the general motion of the three particles.
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C. Chaos in periodically forced oscillators

In Section 2.4.2, when discussing non-linear modeling, we briefly
encountered the term “chaotic”. In this appendix we would like to
go deeper into the concept of chaos as a phenomenon in period-
ically forced nonlinear oscillators. This appendix largely takes the
point of view of [39], as this also is included in [46].

In general, chaos can be characterized by a lack of predictability
in the long term. When studying the long-term dynamics in phase
space we often also meet fractal geometry, in particular in the form
of Cantor sets [63, 123].

For a better understanding of what is going on, we start with a small
detour around the iteration of maps. Systems of differential equa-
tions describe dynamical systems with continuous time, whereas
the iteration of maps concerns dynamical systems with discrete time.
In the latter context, one may think for example at the size of a
population as it changes at some fixed time interval, say per day
or year. As we will see, in the time-periodic case, there is a natural
way to pass from continuous to discrete time via the stroboscopic
map, which will be a helpful tool to observe and clarify chaotic phe-
nomena. A general reference to chaotic systems is [46] which also
contains an extensive bibliography.

C.1. The Hénon attractor

In this section we introduce the Hénon map and its attractor, see [82].
The mathematics here becomes partly experimental, in the sense
that numerically obtained information will get a partially conjec-
tural mathematical interpretation.

We introduce two maps that are iconic for the development of chaos
theory from the 1960s on: the Logistic map and the Hénon map.
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C.1. The Hénon attractor

These systems are given by low-degree polynomials, but the math-
ematics involved in their understanding is very tedious. For an ac-
cessible introduction to this matter we refer to Devaney [56].

C.1.1. Iterating a map

Given a map
F : M ! M

we consider the iterates

x0, x1, x2, . . . where xn+1 = F (xn)

for any x0 2 M and for all n 2 N. In the general setting, M is a
topological space and F is a continuous map, see Engelking [63].
In many applications the topological space is just Euclidean space,
a circle, or, more generally, a manifold. But M may also be a Cantor
set.

Here n 2 N or n 2 Z, depending on whether F is invertible or not,
stands for the discrete time. A subset

{ x0, x1, x2, . . . } µ M

is called an orbit of F . The interest is in the long-term behavior of
orbits, in particular, on which subset of M they accumulate as n !
1.

The Logistic map. As a first example we briefly touch on the fam-
ily of Logistic maps

Lµ :R!R, x 7!µx(1°x) . (C.1)

Iterates
x0, x1, x2, . . . , with xn+1 =Lµ(xn) ,
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C. Chaos in periodically forced oscillators

are being used to model population dynamics, in particular of the
fruit fly (drosophila melanogaster). This map is an endomorphism,
i.e. non-invertible. Despite the innocent-looking form of Lµ, books
could have been and have been written on the properties and the
dynamics of unimodal maps like (C.1). Here we will limit ourselves
to a very basic and superficial discussion, and refer the reader to the
references [46, 56, 147] for further details.

Remark 35. There exist two versions of the Logistic family: next to
(C.1) we also have

x 7! 1°ax2 .

The latter can be derived from the former by scaling x from [0,1] to
[°1,1] and by reparametrizing

µ 2 [0,4] a 2 [0,2]
a= 1

4µ(µ°2)

In the present context, the basic question concerns the long-term
dynamics of the logistic map. That is, for a fixed parameter value µ,
what is the behaviour of xn as n !1?

A numerical experiment. To fix thoughts we perform the follow-
ing numerical experiment. We take any initial point x0 and plot the
iterates x800, . . . , x1000 for various values of the parameter µ between
0 and 4. Note that in this way we neglect an initial transient segment
of iterates and so can get an idea where the iterates of Lµ(x0) settle
down to, or, in other words, where they are attracted to.

In Figure C.1 you can see the result of this experiment. For values of
µ between 0 and 3.0 we can see that the dynamics settles down in a
stable equilibrium point. However at µ= 3.0 it suddenly bifurcates:
the dynamics jumps between two different values, we have an orbit
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C.1. The Hénon attractor

Figure C.1: Bifurcation diagram for the Logistic map or µ 2 [0,4] (top) and
close to the chaotic region for µ 2 [3.1,4] (bottom).
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of period 2. When µ increases further such a period doubling hap-
pens more and more often, until at some value it seems that there is
an infinity of periodic orbits. For even larger values ofµwe get into a
chaotic regime, where the dynamics becomes erratic, correspond-
ing to the longer term unpredictability of the dynamics, which at
the end of this appendix will be related to randomness. The chaotic
regime is interspersed by windows where the behavior is periodic
and hence predictable. The scenario and the diagram described
here are attributed to Feigenbaum, see below for more details. It
turns out to be amazingly difficult to give a solid mathematical ex-
planation for all of this, compare with the above references.

The take-home message of this brief example is that plotting the
evolution of discrete maps can tell us a lot about their dynamical
properties. We will exploit this in the rest of this appendix to de-
scribe the nature of certain dynamical attractors.

The Hénon map. The Hénon family of planar maps, defined as

Ha,b :R2 !R2, (x, y) 7! (1°ax2 + y,bx) ,

is a diffeomorphism and the inverse map again is polynomial. Ob-
serve that for b = 0 the line y = 0 is invariant in the sense that

Ha,0 : (x,0) 7! (1°ax2,0)

Remark 36. From Remark 35 we see that Ha,0 exactly corresponds
to the second version of the Logistic family. Many mathematical
results for the Hénon family are derived from what is known of the
Logistic family by a perturbation analysis for small values of |b|.

In another numerical experiment we can observe that for the pa-
rameter values a = 1.4 and b = 0.3 all initial positions (x0, y0) have
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C.1. The Hénon attractor

Figure C.2: The attractor of the Hénon map and a magnification by a factor
of 10

orbits

(x0, y0), (x1, y1), (x2, y2) . . . , with xn+1, yn+1 =Ha,b(xn , yn) ,

that for n !1 tend to the Hénon attractor H µ R2 as depicted in
Figure C.2 (left), where we also showed a magnification (right). The
set H locally has a lot of self-similarity, as it roughly looks like a
curve in one direction and a Cantor set in the other. For a definition
of Cantor set, see below.

The attractor H is invariant under the dynamics of H1.4,0.3 and the
iteration looks quite erratic, which again corresponds to the longer
term unpredictability of the dynamics, again see below for a certain
comparison with randomness.

A first topological digression. A brief topological digression is
in order now. A Cantor set is a compact set that is both perfect
and totally disconnected. Perfect means that there are no isolated
points and totally disconnected that each point of the set has arbi-
trarily small neighborhoods with empty boundary. The great Dutch
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mathematician L.E.J. Brouwer has proved that such sets are all home-
omorphic, that is, they can be continuously deformed into each other.
For more background on this, see [63, 123]. One might say that Can-
tor sets are very small in the topological sense. In Appendix D we
shall meet a Cantor set as a subset of R, the complement of which is
open and dense.

Figure C.3: Left: The Hénon attractor, compare Figure C.2. Right: pieces of
the stable and unstable manifolds W s (p) and W u(p) of the saddle point
p = (.63, .19) of the Hénon map. See the text for an explanation. Note the
strong resemblance between the attractor and W u(p).

Cantor sets have a fractal nature, in the sense that their dimension
is non-integer, also compare with the discussion in Appendix D. In-
deed, for the box counting dimension the numerical estimate reads
dimBC H= 1.2, so H definitely is “thicker” than a curve. For general
background on fractal sets see [66, 67].

C.1.2. The Benedicks-Carleson Ansatz

The Hénon map, i.e., with a = 1.4 and b = 0.3, has a fixed point p =
(.63, .19), that turns out to be a saddle point, see the plot in the right
hand side of Figure C.3. Its linearization (derivative) DpHa,b at p is
a 2£2–matrix with a positive and a negative eigenvalue. The stable
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and unstable manifolds of p are defined as

W s(p) =
n

q 2R2 | H j
a,b(q) ! p as j !1

o
,

W u(p) =
n

q 2R2 | H° j
a,b(q) ! p as j !1

o
.

In other words W s(p) consists of all points q that converge to p as
time j "+1 , whereas for W u(p) this happens for j # °1. The Nor-
mally Hyperbolic Invariant Manifold Theorem [91, Theorem 4.1]
implies that both W s(p) and W u(p) are smooth curves passing through
p and at p are tangent to the corresponding eigenspaces of DpHa,b .
In Figure C.3 (right) we depicted both W s(p) and W u(p) for some
length and observe a striking similarity between H and W u(p).

However, since curves have dimension 1 and dimBC H = 1.2, they
cannot be equal. The difference between the curve W u(p) and H

is formed by all the accumulation points of W u(p), so we have to
look at the closure W u(p) of the unstable manifold W u(p). Again
compare with [4, 63]. And indeed, the general folklore says the fol-
lowing:

Theorem 4 (Benedicks-Carleson Ansatz). H =W u(p).

This has been a long-standing conjecture that was proven by Bene-
dicks and Carleson [19] for a subset of the (a,b)–parameter plane
of positive Lebesgue measure, close to the a–axis. The proof is a
complicated perturbation analysis for small values of |b|, entirely in
the spirit of Remark 36. However, the point (a,b) = (1.4,0.3) does
not belong to this subset . . .

In the next section, computer simulations show that the Ansatz of
Theorem 4 reaches farther than the Hénon map. Many strange at-
tractors of two-dimensional diffeomorphisms are of the type de-
scribed above, reason why they are commonly called Hénon-like
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strange attractors. Once we turn to periodically forced nonlinear
oscillators we will find many more examples of such strange attrac-
tors. This computer assisted way of reasoning belongs to the area of
experimental mathematics.

but first, we have to establish a useful connection between time-
dependent differential equations and maps.

C.2. The stroboscopic map

In Chapter 2 we met oscillatory systems of the general (smooth)
form

ẍ = f (x, ẋ, t ), (C.2)

for instance both forced and with or without friction and where the
time dependence is periodic, e.g., see equations (2.7), (2.11), or (2.12).
The latter means that

f (x, y, t +T ) ¥ f (x, y, t ) ,

for a given period T > 0.

C.2.1. Determinism again

In Section 1.3 we turned a second order differential equation in x
into a system of two first-order differential equations in (x, y) by
adding the term

y = ẋ .

We called the (x, y)–plane, phase plane. This is the plane in which
the system became deterministic: given any initial point (x0, y0) the
entire future evolution of the system is completely determined.
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However, the case of (C.2) is time-dependent and to obtain again a
deterministic system we need to introduce one more variable that
represents the time t . This leads to a new autonomous system

ẋ = y (C.3)

ẏ = f (x, y, z)

ż = 1.

As an example consider the swing, where

f (x, ẋ, t ) =°cẋ ° (a +"cos t )sin x

and, thus, with an equation of motion

ẍ + (a +" f (t ))sin x = 0 with f (t +2º) ¥ f (t ) . (C.4)

This leads to the following special case of (C.3)

ẋ = y (C.5)

ẏ =°c y ° (a +"cos z)sin x

ż = 1.

With this, we have obtained determinism in the three-dimensional
phase space with coordinates x, y, z: since the system of differen-
tial equations is of first order and autonomous, for any initial point
(x0, y0, z0) the entire future evolution is completely determined.

In the former case of Section 1.3, when dealing with an autonomous
planar system, a planar phase portrait gives a quite clear idea of the
dynamics. But in the present three-dimensional autonomous case,
the three-dimensional phase space is filled by a collection of inte-
gral curves forming a kind of spaghetti tangle that in general does
not offer too much transparency.
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C.2.2. The stroboscopic phase portrait

Fortunately, the time-periodicity helps us to obtain another quite
informative two-dimensional picture by constructing a planar map.
This is the so-called stroboscopic map, that takes a snapshot of the
(x, y)–plane at instants z = 0,T,2T, . . ., recalling that z = t , see Fig-
ure C.4.

Figure C.4: A solution of (C.5) in the (x, y, y) space with snapshots taken at
time instants t = 0,T,2T

Consider the integral curve starting at the point (x, y,0) and fol-
low this till it hits the vertical plane z = T. The intersection point
is called (P (x, y),T ). This defines a map

P :R2 !R2 .

We list a few properties of the map P , without proof, that follow
from the Existence and Uniqueness Theorem for solutions of ordi-
nary differential equations [90].

Proposition 1. 1. The map P is a diffeomorphism;
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2. Extending the integral curve from (x, y,0) to (P (x, y),T ) to the
section z = 2T gives the point (P 2(x, y),2T ).

The former of these two properties can be easily seen by consider-
ing the evolution in negative time, thereby constructing the inverse
P°1. The latter property holds for all sections z = nT (n 2Z) and the
corresponding iterates P n of the map P . This means that by plotting
orbits

. . . , (x°1, y°1), (x0, y0), (x1, y1), (x2, y2), . . . with

(xn+1, yn+1) = P (xn , yn)

in the (x, y)–plane, we can get a good idea of the dynamics of the
system corresponding to (C.2). We here speak of a stroboscopic phase
portrait.

A fixed point of P corresponds to a periodic solution of the system
of differential equations. Similarly for a periodic orbit of P . Note
that in the example of the swing (C.5) the origin (x, y) = (0,0) always
is a fixed point.

Other sets that are invariant under iteration of P are also of interest.
Another numerical experiment performed on the damped swing
system (C.5), i.e., with c > 0, leads to Figure C.5 (left), which surely
looks like a strange attractor!

Remark 37. The stroboscopic map in the present context also is
called return map. This can be explained as follows. Since the sys-
tem (C.5) is periodic in the z–direction, we can identify all the sec-
tions z = nT (n 2Z) with each other. So we can change the geome-
try of the phase space from R3 to R2£S1, whereS1 denotes the unit
circle. For any p 2 S1, the stroboscopic map then becomes a map
from a section R2£{p} µR2£S1 to itself, so indeed, as a return map.
Fortunately, return maps are very suitable for iteration.
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C. Chaos in periodically forced oscillators

FIGURE 8. A Henon-like strange attractor (obtained by iteration) of the Poincare map of the
parametrically forced damped pendulum (a). The attractor is conjecturally the closure of the
unstable manifold WU((Q,Q)) of the origin (b). Again, the stable manifold intersects the unstable
manifolds in a homoclinic tangle, illustrating the complicated dynamics of the system.

'block' of dynamics between  t — 0 and t = 2?r/^ repeats itself periodically. The
Poincare map now follows the integral curves from the section t = 0 to t = 2yr/^,
thus defining the smooth planar map $; compare [7,8] and see also the chapter by
Krauskopf.

In Fig. 8 (a) we depicted the attractor T~L for a certain value of c, cj, fi and e.
In the particular case we are in, a strong resonance is taking place in the sense
that uo : fl ~ 1 : 2, in which case (x, y) = (0, 0) is a saddle-point of the Poincare
map $. This means that the downward 'equilibrium' of the pendulum has been
destabilized by the resonant excitation. It is shown in Fig. 8(b) that it is a good
guess that H — Wu((0, 0)), compare the Henon case in Fig. 4(b), although at the
moment this would not be easy to prove. Locally the geometry also looks like in
the Henon case: as before it 'is' the product of curve and Cantor set. For a more
extensive discussion see [20-22],

Remarks.
1. The mathematical conjecture behind all this goes much further, namely that

in families of 2-dimensional dissipative diffeomorphisms strange attractors are
characterized by T~L — Wu(p\ for a suitable periodic saddle point p.

2. The undamped case c = 0 is also interesting. Then the system is conservative
and the Poincare map <!> can be shown to preserve area4; see [15,23,24]. For

A conceptual proof of this fact uses the Gaufi Divergence Theorem on a flow box.
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Figure C.5: Strange attractor for a damped driven swing (left) and the stable
and unstable manifolds of the saddle point (0,0) (right) [39, p. 48].

In the setting of periodically forced oscillators, given the flow of the
equations of motion, we can construct the stroboscopic map using
the time periodicity to find the right point on the trajectory. Outside
the world of time periodicity it is possible to define a slightly more
general concept, where the sampling is instead dictated by space:
in this case we use a subset ß of the space that is transversal to the
flow, and then sample the trajectory at the point where it intersects
with ß. The corresponding map is called Poincaré map and is a use-
ful tool to study stability and regularity of dynamical systems. In
this more general case, however, obtaining the return points can be
harder than in the time periodic case.

C.2.3. Hénon-like strange attractors

Indeed, the attractor in the left hand side of Figure C.5 locally shows
a great similarity with the Hénon attractor H : in one direction we
distinguish a curve and, transverse to this, some kind of Cantor set.
Moreover, the origin (x, y) = (0,0) is a saddle point and, when plot-
ting the stable and unstable manifolds, see the right hand side of
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Im(E) Im(E]

FIGURE 9. A Henon-like strange attractor (obtained by iteration) of the Poincare map in the
plane {Re(E) — 0} of the rate equation model of an optically injected semiconductor laser (a).
The attractor is conjecturally the closure of the unstable manifold Wu(p) (b). Only a piece of
the stable manifold Ws(p) can be computed, because the Poincare map is only defined locally
near the chaotic attractor. The parameter values are K — 0.62, uo = 0.9, a = 2, B = 0.015 and
F = 0.035 for the Eqs (2) in the chapter by Krauskopf.

RANDOM ASPECTS

In this section we indicate some connections of the above with Probability The-
ory; compare [2,23,25].

The Dynamical Distribution

Let H be a (strange) attractor of the discrete dynamical system xn+i — 3>(xn),
with initial state XQ. This leads to the ^-evolution #0, #1, #2? • • • • For any (reason-
able) subset A C T~L consider the probability

P(A) := lim N + l

which is nothing but the relative visiting frequency of the evolution to A. In many
cases P(A) is independent of the initial state XQ. Assuming this independence, we
obtain a probability distribution on H, usually called the dynamial (or physical)
distribution. It is easy to see that the distribution is dynamically invariant, in the
sense that P($~l(A)) = P(A), for (reasonable) subsets  A C. H. This invariant
distribution allows an important connection with Ergodic Theory, a subdiscipline
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Figure C.6: Strange attractor appearing in the equation modeling an opti-
cally injected semiconductor laser (left) and the stable and unstable mani-
folds of the saddle point (right) [39, p. 50].

Figure C.5, we observe the same phenomenon as before: namely
the attractor strongly resembles the unstable manifold and again
we are tempted to see the Benedicks-Carleson Ansatz confirmed.

Another example occurs in the context of an optically injected semi-
conductor laser [39, 158], where the same Ansatz seems to apply, see
Figure C.6.

In these and many other examples we find Hénon-like strange at-
tractors in the context of periodically forced oscillators with damp-
ing, so where the Benedicks-Carleson Ansatz (Theorem 4) seems to
work very well.

C.3. Scholium

Please notice the careful formulations used here. According to Wiki-
pedia an Ansatz is nothing but
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C. Chaos in periodically forced oscillators

an educated guess or an additional assumption made
to help solve a problem, and which may later be verified
to be part of the solution by its results.

And, indeed, the statements are still far from being a mathematical
theorem, compare our remarks at the end of Section C.1.2 on the
validity of the result in Benedicks-Carleson [19].

The understanding of chaotic dynamics is an ongoing and difficult
research program; the difficulty shows already from the fact that
such simple models have such complicated dynamics. Interestingly
the impetus behind the idea of chaos came largely from outside
mathematics. We list a few pioneers. The physicist M.J. Feigenbaum
(1944-2019) [68], who performed computer experiments on the Lo-
gistic family of maps to obtain the diagram of Figure C.1 and, related
to this, quite a number of interesting conjectures that had a large
mathematical follow-up. The biologist R.M. May (1936-2020) [107,
108]. who studied the fruit fly drosophila melanogaster in terms
of one-dimensional maps related to the Logistic family. The as-
tronomer M. Hénon (1931-2013) [82], who developed the attractor
named after him. Another propagator of these ideas is the mathe-
matical physicist Sir Michael Berry (1941- ) [22], among other things
interested in semiclassical physics, in particular in quantum chaos.
For more historical remarks also compare [46].

C.3.1. Towards an understanding of chaos

The chaotic iterates on the strange attractors we met so far are er-
ratic, which is related to the long-term unpredictability of the mo-
tion. We now shall relate this unpredictability in a certain way to
randomness.
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Ergodicity

This kind of thinking can be formalized in applications of proba-
bility theory on dynamical systems; the ensuing theory is called er-
godic theory. Note that here we returned to the general setting of
Section C.1.1. The main aim is the study of the long-term behav-
ior of orbits of maps or flows. Here, for simplicity, we shall restrict
ourselves to a map F : M ! M . Moreover, we assume that

1. the space M satisfies some general assumptions that we shall
not detail here, but that hold for all the spaces occurring in
general dynamical systems theory;

2. we can define a probability measure µ on M , that is, roughly
speaking, a mapping from “reasonable” subsets A µ M 7!µ(A) 2
[0,1]. Here we call “reasonable” any subset for which µ(A) is
defined;

3. the measure µ is invariant under the map F : M ! M , in the
following sense: for any “reasonable” set A µ M , it holds that
µ(F°1(A)) =µ(A).

It is common to use the following measure in this context [46, Sec-
tion 6.5]. For x 2 M let x, F (x), F 2(x), . . . be the orbit generated from
x, then for any “reasonable” subset A µ M we define

µ(A) = lim
n!1

#
©

j | 0 ∑ j ∑ n and F j (x) 2 A
™

n
, (C.6)

where # denotes the cardinality. The measure µ assigns to A the av-
erage fraction of points of the orbit {F j (x)}1j=0 that are in A. If this
measure is well-defined it is called the measure of relative frequen-
cies of the sequence {F j (x)}1j=0. Often we speak loosely of physical
measure. From the definition (C.6) it directly follows that µ is F –
invariant. The attractor then is the support of the measure µ.
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C. Chaos in periodically forced oscillators

Remark 38. In many cases the periodic points of F densely fill this
attractor. When this happens, the support of the measure is just a
finite set. Yet for almost all values of x we obtain the same (strange)
attractor.

An important property is that the measure µ is ergodic in the sense
that for any continuous function √ : M !R,

lim
n!1

1
n

n°1X

j=0
√

≥
F j (x)

¥
=

Z

M
√dµ ,

which roughly means that the orbit {F j (x)}1j=0 is well-spread over
the attractor.

And indeed, a widely used definition that the orbit {F j (x)}1j=0 is chaotic
just boils down to this ergodicity. When the µ–measure of the un-
derlying attractor is finite, we can scale µ to a probability measure,
and one may well be tempted to see each iterate F j (x), j 2 N as
a sample from this. Of course the successive samples cannot be
stochastically independent, however, for generic values of x the it-
erates F j (x), j = 0,1, . . . , N become more independent for larger N .
There is a lot of mathematics hidden in here, and often we don’t get
much further than numerically supported conjectures. For classi-
cal references see Arnold & Avez [10], Eckmann and Ruelle [59], Ma-
ñé [105] or Viana and Oliveira [155].

One question is how to express the amount of chaoticity of a given
orbit. Quite a few indicators and quantifications of this have been
developed and reported in the literature. In terms of ergodic theory,
it is common to use various forms of entropy. Other related indica-
tors are the dispersion exponent [46, Chapter 2], and the Lyapunov
exponents [125], where the latter compares a given orbit with nearby
ones.

Remark 39. 1. We like to mention that from the Takens Recon-
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Figure C.7: Stroboscopic phase portraits of the swing without damping, i.e.,
with c = 0 (left), and with positive damping c > 0 (right) [46, p. v]; compare
with Figure C.5.

struction Theory [46, Section 6.4], [151, Section 4] it follows
that there remains a clear difference between a chaotic de-
terministic signal and a purely random signal.

2. To explore some of the many ramifications of the theory, the
interested reader may also consult Einsiedler and Ward [60],
that winks towards old and new connections with number
theory.

C.3.2. Chaotic dynamics without damping

All of this works more or less for the strange attractors found in the
dissipative situations, i.e., with damping.

Let us briefly discuss the case without damping, the conservative
case. By Liouville Theorem [5, Section 15] the stroboscopic map P
is always area-preserving. In other words, the Lebesgue measure is

173



C. Chaos in periodically forced oscillators

invariant under P. In terms of the above the Lebesgue measure in
this case also is the physical measure. To fix thoughts, in Figure C.7
(left) the stroboscopic phase portrait is being shown of the system
(C.5) with damping c = 0. In this portrait we detect

1. A couple of periodic points. For instance, the “pupils of the
eyes” correspond to a period 2 orbit.

2. A couple of invariant closed curves.

3. A few clouds of points, where each cloud consists of one sin-
gle orbit.

We shall return to the invariant closed curves in Appendix D, but the
present interest is in a cloud, which replaces the strange attractor
in the dissipative case. Indeed, the motion inside the cloud seems
to be just as erratic as in the attractors. The question then is what
ergodic theory has to say here.

The long-standing Arnold conjecture reported in [10], claims that
the cloud(s) depicted in Figure C.7 (left) densely fill a set of pos-
itive Lebesgue measure where this measure is ergodic for the stro-
boscopic map P . As far as the authors know this conjecture has only
been confirmed in a few exceptional cases, compare Bäcker [17], or
Chernov and Markarian [51] which focuses on the theory of chaotic
billiards. For more or less generic cases as studied in the present
book, the Arnold conjecture still stands . . . Mutatis mutandis, the
considerations of the previous subsection also apply here.

Remark 40. In the present context billiards are played with only one
ball that moves in straight lines on a table and bounces “at equal
angles” at the boundary. The entire motion is assumed frictionless,
so it can go on forever.
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(a) (b) (c)

(d) (e) (f )

Figure C.8: We show 100 successive reflections of one orbit on different bil-
liards. Note the contrast between the regular dynamics in the (a) circle, (b)
square and (c) ellipse billiard and the chaotic dynamics for the (d) Sinai bil-
liard, (e) stadium billiard and (f) cardioid billiard. Figure from [17]
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D. More on resonance

We already encountered the phenomenon of resonance in period-
ically forced oscillators in Chapter 2, in particular in the Sections
2.3.2, 2.4 and 2.4.1. We will now study the somewhat more general
setting of systems depending on parameters. The resonance phe-
nomenon then appears as the interaction of oscillating subsystems,
where the frequencies have a rational relation and where a motion
occurs that is compatible with this relation. One of the leading ex-
amples concerns Huygens’ weakly coupled clocks that are (almost)
identical. This is a 1 : 1 resonance and the compatible motion is
that both clocks tend to synchronize [92]. Forced oscillators will
also come up again for discussion.

One of our interests is the organization of the parameter space in re-
lation to resonances: in the examples this will give rise to so-called
resonance tongues. For parameter values inside the tongues the ac-
tual resonance occurs, but in between the tongues several things
may happen that are interesting from both the topological and mea-
sure theoretical points of view, see Oxtoby [123]. In fact, we shall en-
counter here fractal sets in the sense of Mandelbrot, see Section D.3.4.
In the ensuing nonlinear dynamics we meet a new phenomenon
called quasi- or multiperiodicity. Chaos may also emerge, as we al-
ready saw in Section 2.4.2 and in Appendix C.

The appendix concludes with a discussion on celestial resonances,
in particular on orbital and spin-orbit resonances.

Some phenomenology. In Section 2.3.2 we discussed a few occur-
rences of 1:1–resonances, like the exact tuning of the radio frequency
on the incoming signal. Another example is the resonance in the
earth-moon system, where the rotation of the moon about its axis
occurs with the same period as its revolution around the earth: rea-
son why on earth we always see the same face of the moon. This is
a so-called spin-orbit resonance and it can be explained by the tidal
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force the earth exerts on the moon. For more details see below.

Figure D.1: Botafumeiro in Santiago de Composela

An example of a 1 : 2–resonance is the motion of the Botafumeiro
in the cathedral of Santiago de Compostela. This is a large incense
container suspended on a long rope mounted over a pully high up
in the cathedral and that is kept swinging by a couple of men pulling
the rope to and from over the pully. The Botafumeiro is pulled up
each time that it is near its lowest point, which means that the pulling
frequency is twice as high as that of the pendulum: the system is
in a 1 : 2–resonance. Another example of the 1 : 2–resonance, al-
ready mentioned in Section 2.4.1, is the rolling and even capsizing
of ships that go astern on an increasing wind. This is related to the
occurrence of resonance peaks as depicted in Figure 2.15.

On methodology. The mathematical program for understanding
phenomena like the above is to provide models in terms of dynam-
ical systems depending on parameters and to study the emerging
dynamics. The dynamics, as we mentioned, can vary from periodic
to quasi- or multiperiodic and even chaotic. Varying the parame-
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Figure D.2: Huygens’ weakly coupled pendulum clocks [92]

ters, the type of dynamics can change, giving rise to bifurcations (or
phase transitions) between those various types of dynamics. Apart
from the examples mentioned above, the theories presented in this
appendix are being applied widely in the sciences, in contexts vary-
ing from climate change to biological systems.

D.1. Huygens’ clocks

Our leading example concerns the following experiment described
by Huygens [92], see Figure D.2. A beam is mounted not too rigidly
on two chairs and two almost identical pendulum clocks are sus-
pended on the beam. Huygens observed that the clocks tend to
synchronize and the two pendulums tend to swing in anti-phase.
Following [29], we are going to give a mathematical description that
explains this as a form of averaged synchronization.
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D.2. Arnold resonance tongues and fractal
geometry

In Huygens’ experiment, each pendulum consists of a point mass
that moves on a circle. Since we have two pendulums we are dealing
with two circles, say with angles (',√), which together parametrize
a two-dimensional torus: the product of the two circles.

So the dynamics consists of integral curves on this torus, see Fig-
ure D.3. Let us assume that a Poincaré map is defined from some
“vertical” circle of the form √ = constant to itself. In terms of Ap-
pendix C we may well speak of a return map. Such a map may well

�

P(�)

Figure D.3: Poincaré map maps the circle to itself [46]

take the following form,

P :S1 !S1 (D.1)

' 7!'+2ºÆ+" f (') ,

and its iterations, as in Appendix C, would give us a good idea of the
long-term dynamics. In general, we speak of resonance whenever
this dynamics is periodic. Our investigation of Huygens’ clocks has
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led us to the theory of circle maps. We now first need some proper-
ties of such maps.

Note that meanwhile, we have abandoned the context of Huygens’
clocks; the study of dynamical systems consisting of iterations of
maps like (D.1) has a far wider interest. For details see [6, 46, 56].
We shall come back to Huygens at the end of this section.

D.3. A theoretical digression into circle
maps

An important tool is the rotation number as introduced by Poincaré.
Part of the content of this section is also due to the work of Arnaud
Denjoy in the 1930s and Andrej Kolmogorov two decades later in
the 1950s.

D.3.1. Denjoy Theory

A tutorial introduction to Denjoy Theory can be found in Devaney [56,
Ch. 1.14].

Let us start with an orientation preserving homeomorphism

F :S1 !S1

and consider a lift
F̃ :R!R

defined by the property

¶± F̃ = F ±¶
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where¶ :R!S1 is the projection

x 2R 7!'= e2ºix 2S1 µC ,

Here we consider S1 ª= R/2ºZ, which we identify to a subset of the
complex plane C whenever convenient. Note that the lift is not
unique, but only defined modulo 2ºZ.

We define the rotation number of F by

%(F ) = 1
2º

lim
n!1

F̃ n(x)
n

,

which can be shown to be independent of the point x [56]. More-
over, since the lift F̃ is not unique, we take the rotation number
modulo Z. The rotation number measures the average rotation of
F . It turns out that the important distinction is whether or not the
value of % is rational. We now list some properties of this quantity.

Proposition 2. 1. Let F and G be orientation preserving circle home-
omorphisms, i.e., continous maps with continous inverses, and
assume that they are topologically conjugate, i.e., there exists
an homeomorphism H :S1 !S1 such that

G ±H = H ±F . (D.2)

Then %(F ) = %(G).

2. %(F ) 2Q if and only if F has a periodic orbit.

3. Assuming that the map F is sufficiently smooth (say of class
C 2), then the fact that %(F ) is irrational implies that F is topo-
logically conjugate to a rigid rotation.

We give some comments on Proposition 2. Equation (D.2) means
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that the following diagram commutes.

S1 F //

H
✏✏

S1

H
✏✏

S1
G

// S1

Loosely speaking it means that up to the continuous transformation
H (say, a change of variables) the maps F and G are the same. A
transformation like H is often referred to as a conjugacy.

The first statement then says that if such a conjugacy exists, then the
rotation numbers of F and G are equal. In other words, the rotation
number is a topological invariant. The second statement, together
with the first, implies that the periodic orbits of F are in correspon-
dence with the given rotation number. The third item is known
as the Denjoy Theorem [119]. It says that for sufficiently smooth F
there is a topological conjugacy with the rigid rotation

R2º%(F ) :' 7!'+2º%(F ) .

Recall from the first statement of the proposition that two circle-
maps are topologically conjugate if there exists a homeomorphism
that transforms one into the other.

By the way, in general
%(R2ºÆ) =Æ .

Moreover, the fact that Æ ›Q implies that every single orbit of R2ºÆ

densely fills the circle, see [46, Lemma 2.4]. The latter property is
preserved by the topological conjugacy.

The dynamics of such an irrational rotation often is referred to as
quasiperiodic or multiperiodic. When returning to the context of
dynamics on the 2–torus this means that in average rotations in the
' and √ direction are no rational multiples of each other, or more
compactly, not rationally related.
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Remark 41. In the Denjoy Theorem (Proposition 2, third item) reg-
ularity is essential in the following sense. There exists a C 1–diffeo-
morphism of the circle with an irrational rotation number, that is
not conjugate to a rigid rotation [56, Chapter 1.14]. For further de-
tails also see [119]. This map is called the Denjoy counterexample;
all of this contributed to motivating the follow-up mentioned before
and that is in part presented in the upcoming sections.

We continue sketching some further background theory.

D.3.2. Kolmogorov-Arnold-Moser (KAM)

Kolmogorov extended the Denjoy Theory greatly into what today
is known as Kolmogorov-Arnold-Moser Theory. The combination
of these theories forms a cornerstone of the discipline of dynam-
ical systems. The heritage of Denjoy and Kolmogorov has a vast
follow-up that runs till the present day and that includes many ap-
plications in mathematical physics and celestial mechanics. In the
present context, we only lightly touch on this rich material, for gen-
eral background referring to [12, 28, 37, 38, 42, 86, 149, 162]. More or
less tutorial introductions to KAM Theory can be found in [46, Chap-
ters 2 and 5], also see [38, Chapter 6], [96, Chapter 15.4], [101] and
[127].

KAM Theory. Consider irrational numbers that are badly approx-
imated by rational numbers in the sense that Diophantine condi-
tions ØØØØÆ° p

q

ØØØØ∏
∞

qø
(D.3)

hold for given constants ∞> 0,ø> 2 and for all rationals p/q .
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We name this set Dø,∞. As a closed set, by the Cantor-Bendixson
Theorem [80], this is the union of a perfect and a discrete set. Since
the rational numbers are in its complement, Dø,∞ is totally discon-
nected and hence the perfect set is a Cantor set. As we saw in our
first topological digression of Section C.1.1, the definition of a Can-
tor set is a purely topological matter. However, measure theoreti-
cally we have the following.

Proposition 3. The intersection Dø,∞ with any closed interval has
positive measure that tends to full measure as ∞ # 0.

Proof. For simplicity consider the closed interval [0,1]. We shall
prove that the measure of the complement [0,1]\Dø,∞ tends to zero
as ∞ # 0.

Indeed, for a fixed integer q consider the rational numbers p
q 2 [0,1]

for p = 0,1, . . . , q°1. The Diophantine condition requires us to delete
the open interval µ

p
q
°∞q°ø,

p
q
+∞q°ø

∂

from [0,1]. Each of these intervals has length 2∞q°ø. Since there are
q values of p, the measure (length) of the union of deleted intervals
is less than or equal to 2∞q°ø+1. Taking the sum over all integers
q ∑ 1 then gives

measure
°
[0,1] \Dø,∞

¢
∑ 2∞

X

q∑1
q°ø+1 =O (∞)

as ∞ # 0, where we use that ø> 2.

Compare [46, Section 5.2.2], for more background we refer to [63,
123].
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In the case that Æ 2Dø,∞, the conjugacy with the rigid rotation R2ºÆ

is smooth! This result is typical for the Kolmogorov-Arnold-Moser
Theory [46, Chapters 2 and 5].

Remark 42. 1. KAM Theory deals with the so-called problem of
small denominators, when looking for the conjugation H of
Proposition 2 in terms of Fourier series. Small denominators
are central in dynamical systems, also in higher dimensions.
Applications can be found, among many other areas, in celes-
tial mechanics and, more generally, in mathematical physics,
see the above references. We will discuss some of these in the
rest of this Appendix.

2. In the related context of linearizing quadratic polynomials on
C with linear part e2ºiÆ, Jean-Christophe Yoccoz (1957-2016)
was awarded a Fields medal in 1994. He proved that the so-
called Bruno condition on Æ is necessary and sufficient for
linearization. The Bruno condition is an extension of (D.3) in
terms of continued fractions [161, 163].

The Fields Medal is the analog of the Nobel Prize for mathe-
matics and Yoccoz was the first Fields medalist in the field of
dynamical systems.

D.3.3. The Arnold family of circle maps

The simplest non-trivial case of a parametrized circle map is the fol-
lowing:

AÆ," :S1 !S1 (D.4)

' 7!'+2ºÆ+"sin' ,

187



D. More on resonance
H. Broer, H. Hanßmann and F. Wagener Indagationes Mathematicae 32 (2021) 33–54

Fig. 1. Array of resonance tongues. Inside the resonance tongues the dynamics is resonant or phase locked.
Intersection with a horizontal line results in an open and dense union of resonance gaps.

behaviour is obtained when the internal dynamics on the torus is quasi-periodic, that is, of the
form

ẋ = !, (2)

for x 2 Tn , where x is the vector of torus angles, and where the frequency vector ! 2 Rn

is such that there is no relation hk | !i = 0 with integer coefficients k 2 Zn . Indeed, if the
expression hk | !i is bounded away from 0 by Diophantine conditions, KAM theory can be
invoked to show the persistence of these invariant tori.

Resonance. An important notion that comes up here is resonance. As an example consider the
2-torus T2 with a flow generated by (2). If the frequency vector ! has components !1 and !2
that have a rational relationship

hk | !i = k1!1 + k2!2 = 0,

we speak of an (internal) resonance. The flow then consists of periodic orbits, foliating the
torus. When no resonances are present each orbit fills the torus densely. In the resonant case
the frequency ratio ↵ = !1/!2 is rational, while in the non-resonant case it is irrational. Both
cases are dense in the ↵-axis; the set of frequency ratios satisfying a Diophantine condition,
which is a strong form of non-resonance, has moreover full measure.

In this 2-dimensional context it is convenient to consider a Poincaré section transverse to the
flow. The corresponding Poincaré mapping is a circle diffeomorphism. An interesting example
to account for nonlinear effects is the Arnol’d family of circle diffeomorphisms given by

x 2 T1
7! x + 2⇡↵ + " sin x, (3)

where " 2 R is a perturbation parameter. In the (↵, ")-plane of parameters the values
corresponding to resonant and non-resonant mappings are shown in Fig. 1.

Remarks.

- The interior of the resonance tongues constitutes an open and dense subset of the
parameter plane and therefore is large in the topological sense.
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Figure D.4: Arnold resonance tongues in the (Æ,")–plane [29]

the so-called Arnold family of circle maps [5]. This example already
contains many interesting properties that can help to understand
Huygens’ experiment somewhat better.

Without a detailed proof we present Figure D.4, that contains an
array of resonance tongues, the Arnold (resonance) tongues, that
forms a catalogue of the dynamics of the family AÆ," in the (Æ,")–
plane. In fact from each point (Æ,") = (p/q,0) a resonance tongue
emanates in which for the rotation number %(AÆ,") we have

%(AÆ,") ¥ p
q

and for parameter values inside there are periodic orbits of exactly
that rotation type, in other words in p : q–resonance. In particular,
within the 1 : 1 main tongue emanating from (Æ,") = (0,0) there are
fixed points.

Such arrays of tongues occur frequently in science. For an example
in chronobiology we refer to [18].

On computing the tongues. To fix thoughts we compute the
main tongue of the Arnold family AÆ,". So we are looking for fixed
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points

AÆ,"(') =' ,

i.e.,

'+2ºÆ+"sin'=' ,

which leads to

sin'=°2ºÆ
"

.

This equation has solutions in ' for all parameter values

2º|Æ|∑ " ,

which exactly determines the main tongue. On the circle you can
find two fixed points, one attracting and one repelling, that annihi-
late each other at the boundaries 2ºÆ= " in a saddle-node bifurca-
tion [56, Chapter 1.12]. Note that the main tongue has boundaries
that meet with a nonzero angle at the tip (Æ,") = (0,0).

The higher-order tongues have been computed numerically, but much
is known of the asymptotics at the tongue tips (Æ,") = (p/q,0). The
tongue boundaries here are tangent of order O(|q|), see [44] for more
details.

The global picture. Another property of the rotation number
is that it is a continuous function of the parameters (Æ,"). Thus,
since %(AÆ,0) = Æ, for sufficiently small "0 fixed, the rotation num-
ber %(AÆ,"0 ) is continuous and non-decreasing as a function of Æ.
Moreover, it is constant for any rational value. The graph of this
function, depicted in Figure D.5, is referred to as a Devil’s staircase.
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Figure D.5: Devil’s staircase: graph of Æ 7! %(AÆ,"0 ) for small "0 > 0 [29];
at rational values the graph is horizontal on plateaux corresponding to the
resonance tongues. The points where the function is not constant forms a
fractal set in the sense of Mandelbrot, see Section D.3.4. This set has a posi-
tive Lebesgue measure; see the main text for further explanatory remarks.

D.3.4. A second digression on topology and measure
theory

We conclude this section on circle maps with another discussion
on the topological- and measure-theoretic properties of the Arnold
family, in particular on Figure D.4.

Again consider a horizontal line in the (Æ,")–plane at height "0 > 0,
chosen sufficiently small. We observe the following.

1. The intersection of the line "= "0 with the union of resonance
tongues forms an open and dense set.

According to the Denjoy Theorem (Proposition 2, item 3), its
complement is the set of parameter values with quasiperiodic
dynamics. It follows that this is a totally disconnected closed
set, that contains Diophantine sets Dø,∞, as described above
in relation to KAM Theory. By Proposition 3, for sufficiently
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small ∞, this set is of positive Lebesgue measure. Next, we
choose the constant ∞ as a suitable function of " that tends to
0 with ". This implies that

measureDø,∞(")

tends to full measure as " # 0. For additional details we refer
to the above references, to the first topological digression in
Appendix C and for general background to [63, 123].

2. According to Mandelbrot [104], we speak of a fractal set when
its Hausdorff dimension is larger than its topological dimen-
sion [63, 80, 123]. Without going into all definitions we just
mention the following: The fact that the set of parameter val-
ues with quasiperiodic dynamics has positive measure im-
plies that the Hausdorff dimension equals 1 while the fact that
it is totally disconnected implies that the topological dimen-
sion equals 0. Granted the details, this shows that the param-
eter points with quasiperiodic dynamics form a fractal set.

Finally, we mention that the Arnold family A in many respects is
already generic, in the sense that most of the above properties also
hold for circle maps where the periodic term f (') = sin' in (D.1) is
replaced by an arbitrary trigonometric polynomial or even a general
smooth periodic function. The only difference with what has been
described here is the order of contact that the boundaries of a given
tongue may have, compare with [44].

D.3.5. Back to Huygens’ clocks

We now return to the torus-circle model for Huygens’ weakly cou-
pled pendulum clocks. Generically the periodic term in the corre-
sponding Poincaré map (D.1) has a main tongue as described above,
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so where the tongue boundaries meet with a positive angle at (Æ,") =
(0,0); in fact all tongues open up a bit. Since the pendulum clocks
are almost identical, the corresponding (Æ,") must be in this main
tongue, which implies synchronization on average.

We like to note the universal nature of the above approach. To find
sharper forms of synchronization, i.e., where the pendulums move
in phase or anti-phase, we must take into account also the dynam-
ics of the beam. We here refer to, e.g., [20, 128].

ε

α

ε

α

ε

α

Figure D.6: Tongues in the Mathieu equation [110] (upper left), a modified
Mathieu equation [43] (upper right) and Square Hill equation [40] (below)

D.4. Parametric resonance: Mathieu’s
equation and the like

In Section 2.4.1 we already got acquainted with parametric reso-
nance. Instead of (2.11) we here, as in Appendix C, use the swing
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form (C.4)

ẍ + (a +" f (t ))sin x = 0 with f (t +2º) ¥ f (t ) . (D.5)

We also use the system form (C.3)

ẋ = y

ẏ =°(a +" f (z))sin x

ż = 1.

and the ensuing stroboscopic map. For f we distinguish the follow-
ing alternatives

f"(t ) = cos t +"cos(2t )

f (t ) = sign(cos t ) .

In the sequel, we shall also use the linearized version of (D.5)

ẍ + (a +" f (t ))x = 0, (D.6)

The case of f = f0 is the classical Mathieu equation, see [110]. The
case f" for "> 0 is the modified Mathieu equation, see [43], and the
other case is known as Square Hill equation [40].

The stability diagram

We consider the trivial periodic solution x ¥ 0 ¥ ẋ and its stability.
In terms of the stroboscopic map, this amounts to whether the cor-
responding fixed point (x, y) = (0,0) is an elliptic point or a saddle
point, something that can be read off from the derivative D(0,0)P.
In turn, this derivative is completely determined by the linearized,
Mathieu-like equation (D.6) that for "= 0 turns into

ẍ +ax = 0.
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The system form then is

µ
ẋ
ẏ

∂
=

µ
0 1

°a 0

∂µ
x
y

∂

The eigenvalues are ±i
p

a and therefore

D(0,0)P has eigenvalues e±i
p

a .

For a > 0 these are always elliptic (i.e., imaginary) but for

a = 1
4 k2, k = 0,1,2, . . .

they equal ±1. In the (a,")–plane the points (a,") = ( 1
4 k2,0), k =

0,1,2, . . . turn out to be tips of resonance tongues in which the eigen-
values are real, which means that the fixed point (x, y) = (0,0) is a
saddle point and is therefore unstable. Bifurcations (so-called sub-
harmonic bifurcations) then take place at the corresponding tongue
boundaries. For instance the tongue with k = 1 when the eigenval-
ues of D(0,0)P are close to °1, this bifurcation is a period doubling
and we speak of a 1 : 2–resonance. For more details see below. In
Figure D.6 we displayed three diagrams with tongues in the (a,")–
plane for different choices of f .

Remark 43. 1. In two of the three stability diagrams tongues oc-
cur with intersections in their boundary curves. It turns out
that the corresponding patterns are universally arranged by
so-called A2k°1–singularities, see [40, 43],[11, Chapter 15] for
details.

2. Note that the 1 : 2–resonance near the tongue tip with k = 1
resembles the Botafumeiro motion as described in the intro-
duction to this appendix.
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The nonlinear dynamics

In this section we focus on the 1 : 2–resonance tongue emanating
from (a,") = ( 1

4 ,0) and the corresponding dynamics. As said before
the ensuing bifurcation is a period doubling.

One way to get information on the nonlinear dynamics of (D.5) is to
consider its system form.

ẋ = y (D.7)

ẏ =°(a +" f (z))sin x

ż = 1,

compare (C.5), and by a repeated averaging procedure arrive at a
planar vector field defined on an appropriate covering space. This
procedure largely follows Takens [150]. The stroboscopic map then
is approximated to arbitrarily high order by the time 1 map of this
Takens vector field T , composed with the reflection °Id. The vector
field T also is invariant under °Id. For details see [47]. The Takens
vector field is sometimes called interpolating, for a phase portrait
see Figure D.7.

We shall not go into the details here, but just comment on the nu-
merically obtained stroboscopic phase portraits in Figure D.7.

We can still more or less recognize the underlying vector field T . The
parameters (Æ,") are inside the tongue so the central fixed point,
corresponding to the trivial periodic solution x = 0 = y , is a saddle
point. The vector field T has a figure–8 homoclinic loop, enclosing
two equilibria. However, by the flipping for the stroboscopic map
this is a periodic orbit of period 2 and a 4º–periodic solution of the
system (D.7). In fact, all equilibria of the vector field T occur in pairs
that form period 2 orbits. Moreover

1. There exist (pairs of) families of invariant circles, that are densely
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Figure D.7: Stroboscopic phase portraits near 1 : 2–resonance in the case of
Mathieu forcing; top left " = 0.25, top right " = .40. Compare Figure C.5.
Bottom: approximating Takens vector field T
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filled by quasiperiodic dynamics. This is in agreement with
the KAM Theory described in Section D.3.

2. As is to be generically expected all homo- and heteroclinic
connections of the Takens vector field turn into a tangle, with
its abundance of Smale horsehoes [46, Chapter 4]. In simu-
lations we don’t see the tangle, but just orbits that seem to
densely fill up large areas. In Appendix C, particularly in Sec-
tion C.3.1, we discussed this type of conservative chaos. As
spelled out there, the long-standing Arnold conjecture is that
the Lebesgue measure is ergodic for the stroboscopic map at
hand [10].

D.5. Scholium

This appendix concludes with a number of examples where several
kinds of resonance play a role. In the first example, the forcing is
quasiperiodic and we touch on the corresponding Mathieu equa-
tion being the spectral equation of a Schrödinger operator.

The second example deals with celestial resonances, a phenomenon
that turns out to occur often in the solar system. Here we distin-
guish between sheer orbital resonances and spin-orbit resonances.

D.5.1. Quasiperiodic Mathieu versus Schrödinger

In this section we consider a quasiperiodic analogue of the Mathieu
equation, given by

ẍ + (a +" f (t ))x = 0 (D.8)
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with f (t ) = F (!1t ,!2t , . . . ,!n t ) for a a sufficiently smooth (or real
analytic) map F :Tn !R.

This equation can be largely treated in the same way as (D.6) [36],
where we assume ! to be quasiperiodic. It turns out that the ge-
ometry per tongue is as before, but globally we find the same fractal
geometry as in the case of the Arnold family (D.4), see Figure D.4.

Schrödinger operators

The connection between dynamical systems, including KAM The-
ory, and spectral theory runs deep and is the subject of ongoing re-
search in mathematical physics. Here we shall not go into the de-
tails of quantum chaos and semiclassical analysis and restrict our-
selves to some relevant aspects.

The equation (D.8) is of special interest since it is the spectral equa-
tion of the one-dimensional Schrödinger operator

(H"x) (t ) =°ẍ(t )°" f (t )x(t )

for x = x(t ) 2 L2(R), with quasiperiodic potential " f . Here L2(R)
is the space of Lebesgue measurable functions x = x(t ) such thatR
R |x(t )|2 d t <1.

This operator is widely being studied, among others by Dinaburg
and Sinai [58], by Moser and Pöschel, Eliasson, and by Broer, Puig
and Simó [41, 61, 112], where tools from both KAM- and singular-
ity theory are being used. The lettering however is mostly chosen
differently: the time t is replaced by a spatial variable x, and the
potential " f (t ) by V (x) or U (x).
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From gaps to tongues. Usually " is not taken into account as a
parameter and, in the above terms, one is just dealing with a fixed,
(sufficiently) small "0 > 0. The intersection with the tongues then
correspond to spectral gaps. In [41] a rotation number % is intro-
duced that, as before, is a continuous function of the parameters a
and ". In Figure D.8 a graph is depicted which shows another Devil’s
staircase. Here one speaks of a Cantor spectrum.

Moser and Pöschel [112] state that generically the gaps do not close.
However, the results of [41] show that the addition of the parameter
" leads to a generic gap-closing theory where the pattern again is
governed by the singularitiesA2k°1 [11].

Figure D.8: Another Devil’s staircase [41], where we take n = 2, !1 = 1 and
!2 = 1

2 (
p

5°1), for "= "0 sufficiently small. The description in the caption
of Figure D.5 largely applies also here.
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From continuous to discrete. Next we consider a discrete Schrö-
dinger operator, also known as almost Mathieu operator,

(H∏,Æ,µx)n = xn+1 +xn°1 +2∏cos(2ºÆn °µ)xn (D.9)

where ∏,Æ,µ 2R are real parameters and

u = (. . . , x°2, x°1, x0, x1, x2, . . .) 2 `2(Z) ,

where `2(Z) is the space of square-summable doubly infinite se-
quences, i.e., with

P
n2Z |xn |2 <1.

The spectrum turns out to be independent of µ but varies wildly
with respect to the other parameters. Here we will not go into the
effect of ∏ on the spectral type but just focus on the remaining pa-
rameter Æ. When the value of Æ= p/q 2Q is rational, the spectrum
of H∏,p/q,µ is given by the union of q intervals possibly touching at
endpoints, see Figure D.9. This follows from Floquet theory, which
we have met in disguise in the previous discussion of the Hill and
Mathieu equation. WhenÆ is irrational, we again see a Cantor spec-
trum for all ∏ 6= 0 and therefore with Devil’s staircases.

Remark 44. The latter statement,

for irrational Æ the spectrum of the almost Mathieu op-
erator (D.9) is a Cantor set,

is commonly referred to as the Ten Martini problem. This name
came from Barry Simon in 1981, after Marc Kac had offered a prize
for its solution [140, Problem 4]. The conjecture was proven 24 years
later, in 2005, by Artur Avila and Svetlana Jitomirskaya, see [14, 15,
98].

The almost Mathieu operator arises in the context of the Integral
Quantum Hall Effect [160] at the center stage of the 1985 Nobel Prize
in physics in [121]. And it brings us to the verge of many recent
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Figure D.9: Hofstadter’s butterfly [89] is the fractal obtained by plotting
the spectrum of the operators H1,Æ,µ for the rational values Æ 2 Q\ [0,1].
It describes the spectral properties of non-interacting electrons in a two-
dimensional lattice under the influence of a perpendicular magnetic field.
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mathematical advances, contributing to the award of a 2014 Fields
Medal to Avila [70].

Figure D.10: The Hall resistance varies stepwise with changes in the mag-
netic field B. The lower peaked curve represents the Ohmic resistance,
which disappears at each step [73]. Note that this figure relates to the case of
rationalÆ and therefore does not correspond to a Devil’s staircase. Perhaps,
however, that you can still see the ghost of such a staircase . . .

Abundance of Cantor sets and Devil’s staircases. Referring
to the Figures D.5 and D.8, to Smale horseshoes, tangle and the
like [46], and also to the general discussion on KAM Theory in Sec-
tion D.3, it should be no longer a surprise that Cantor sets and Devil’s
staircases appear widely in dynamical systems and various other
theories within mathematical physics. Here it is noteworthy that
the Cantor sets sometimes have positive measure and sometimes
measure zero.

Remark 45. 1. In the literature on theoretical solid-state physics,
field theory and statistical mechanics, one stumbles over these
gadgets [71]. For instance, it turns out [98] that models like
the almost Mathieu operators presented here are also at the
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roots of the so-called Fractional Quantum Hall Effect [16, 72]
(see also Figure D.10), a phenomenon the discovery of which
led to a Nobel Prize in physics in 1998 [73].

2. We also like to point out that the mathematics used in the his-
tory of the Ten Martini problem and many of the proofs of
partial results that appeared over the years heavily rest on ap-
plications of KAM Theory, e.g. [13, 58, 62, 85, 139].

D.5.2. Celestial resonance

When looking at the night sky we may see a lot of rotations and
oscillations, especially when studying the heavenly bodies within
our solar system. These motions form the main subject of celestial
mechanics. And although the dimensions of the phase spaces are
much higher than in the present book, the mechanical principles
remain the same: one works mainly within the Newtonian theory,
now and again applying a relativistic correction.

A taste of resonance. The solar system exhibits many resonances.
We distinguish between two types of these: orbital and spin-orbit
resonances.

An example of the former resonance is given by the inner three Gali-
lean moons of Jupiter: Io, Europa and Ganymedes. These trace their
almost circular orbits in an orbital 1 : 2 : 4 resonance. This means
that Europa has a period of revolution that is twice that of Io and
similarly that Ganymedes takes twice as long as Europa to revolve.
This resonance was conjectured by Laplace [97] and an appropriate
periodic solutions were provided by Willem de Sitter [141, 142]; for
later references on quasiperiodic librations of the latter see [34, 35,
48].
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An example of a spin-orbit resonance is given by the motion of the
moon around the earth. Since the moon always shows us the same
face, its revolution around the earth and the rotation (spin) around
its own axis must be equal (at least on average). We speak of a 1 :
1 spin-orbit resonance. Other examples are the Galilean moon Io
with respect to the planet Jupiter, and Enceladus and Rhea both
with respect to Saturn. Similarly Mercury is in a 3 : 2 spin-orbit
around the sun: it rotates twice about its axis against two revolu-
tions around the sun [50].

One main physical explanation is given by the tidal effects that the
celestial bodies exert on each other and that by friction slow down
the rotation about their axes. Indeed, to give an idea consider the
tidal waves caused by the moon (and sun) on the Earth, that are
clearly visible in the oceans. However, also Earth’s surface itself, at
the equator, in each wave is lifted for about 40 cm. In this way the
earth has captured the moon into this 1 : 1 spin-orbit resonance,
but in the very long run the earth itself will also be captured by
the moon. Then days and months will have become equally long
and the pair will move around in the solar system as a rigid body.
By the same mechanism Pluto and his companion Charon have al-
ready captured each other in this mutual embrace. For an overview
see [29].

An adiabatic Ansatz. The general philosophy is that by the tidal
effects the rotations decrease in an adiabatic way, being captured in
a resonance now and again [84]. As a caricature think of the Arnold
tongues in Figure D.4, where the parameter Æ is moving adiabati-
cally towards 0. The system then passes through many resonances,
where the higher-order ones are barely observed, finally ending up
being captured in the lowest possible, ‘synchronizing’ 1 : 1 reso-
nance.
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When considering orbital resonances with more satellites, validity
of Kepler’s third law may well lead to a final 1 : 2 : 4 resonance cap-
ture [34, 35] . . .

A spin-orbit model. To further explain the capture in a spin-orbit
resonance, we introduce a mathematical model [78, 49] to describe
the spinning motion of a satellite around a central heavy body.

The simplest form of the model assumes that a triaxial satellite is or-
biting a larger, heavier body on a Keplerian ellipse. Furthermore, we
also assume that its spin-axis is perpendicular to the orbital plane
and that it coincides with the smallest axis of the satellite. The equa-
tion of motion that describes the rotation of such a satellite around
its spin-axis ends up being a particular damped forced oscillator,
ruled by two parameters: the asphericity of the satellite and the el-
liptic eccentricity of the orbit.

It was one of the great achievements of Newton to recognize the
central role of the linear momentum in his Philosophiæ Naturalis
Principia Mathematica [118]. This linear momentum, for a body of
mass m that moves with velocity ẋ, reads

p = mẋ. (D.10)

Newton’s famous second law (1.1), then gets the form

F = ṗ . (D.11)

It is to be noted that usually these notions go in vectorial form.

Similar equations exist for rotating motion. Assuming that the body
moves along an angle µ with an angular velocity µ̇, then we can re-
place the expression (D.10) by

L = I µ̇ ,
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the angular momentum. Here I is the moment of inertia of the spin-
ning body [76], with respect to the (instantaneous) axis of rotation.
Just like the mass m of an object can be understood as the physical
property that resists to its velocity ẋ, so can the moment of inertia
I be understood as the property that resists to its rotational veloc-
ity µ̇. The role of the force F is now taken over by the torque N and
equation (D.11) for this case reads

N = L̇ .

Since I also depends on t we here get

L̇ = İ µ̇+ I µ̈

and so the equation of motion of the spin-orbit motion reads

N (µ, t ) = İ µ̇+ I µ̈ . (D.12)

Figure D.11: Schematic representation of the spin-orbit model

It turns out that it is a realistic assumption that I has the format

I (t ) = Ĩ +"cos(≠t ) ,

so with average Ĩ that varies periodically with some frequency ≠.
Moreover the torque N = N (µ, µ̇, t ) that accounts for the revolution
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of the satellite around the heavy body, is also assumed to be peri-
odic in t . Damping is included as well in the model, to express tidal
friction. As in the models of Chapter 2 and Appendix C, the small
damping is dealt with in a perturbative way. Thus we can rewrite
the equation of motion (D.12) in the familiar form

µ̈+ d I
d t

µ̇

I
° N (µ, µ̇, t )

I
= 0, (D.13)

assuming that I 6= 0. As in Appendix C, we can plot stroboscopic
phase portraits to get an idea of the dynamics of (D.13), for exam-
ples see Figures D.12 and D.13.

Resonance capture. Compared to the general philosophy of An-
satz D.5.2, the spin-orbit model gives a more realistic view and more
detailed idea of a specific resonance capture, especially in Figure D.13.
Nevertheless, the time scale in Figure D.13 also here indicates an
adiabatic process. For details we refer to [74, 75, 84, 130].

Given the perturbative nature of damping in (D.13), the evolution of
the damped system for a long time remains close to an orbit of the
undamped system. In Figure D.13 we can witness a ‘chaotic’ orbit
being captured over a long time span into a 1 : 1 resonance: after
some time the satellite effectively is in synchrony with the revolu-
tion around the planet, with only remarkably small deviations.

We note that the present model has two frequencies which makes
it harder to analyze, also compare Section D.5.1. Indeed, a full un-
derstanding of this phenomenon is still the subject of scientific de-
bate [113, 114, 115]. Considering the spin-orbit resonances in our
solar system, it remains quite unclear why certain ’non-synchronizing’
resonances, like the 2 : 3 spin-orbit resonance of Mercury, are so
prevalent. Nevertheless, a careful analysis of the spin-orbit prob-
lem of the Earth-Moon system [49] indicates that the system may
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Figure D.12: The left-hand panels present the time-evolution of µ̇ for the
spin-orbit model (D.12) in the non-resonant case ≠=

p
2 for "= 0.01 (top)

and " = 0.2 (bottom). The right-hand panels show the stroboscopic phase
portraits of the damped model (red or gray dots) as compared to the un-
damped model with "= 0 (black dots) [27].
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Figure D.13: The evolution of µ̇ for the spin-orbit model (D.13) in the case
of capture in the synchronous 1 : 1 resonance (left); The stroboscopic phase
portrait on the right clearly confirms this resonance capture [27].

well be in the middle of a narrow tongue close to the frequency 1,
which again confirms the adiabatic philosophy of Ansatz D.5.2.

Remark 46. Considering the dissipative stroboscopic phase portraits
of Figure D.12, one may well ask whether there is chaos in the sense
of Appendix C. For recent research in this direction see [54, 55]. On
the other hand, the graphics also suggests the possibility of infinitely
many sinks in the sense of Newhouse [116, 117], also compare with [124].

D.5.3. A final exercise on Kepler’s third law

In this exercise we determine Kepler’s third law from mathematical
principles under Newtonian gravitation, also using Newton’s sec-
ond law

F = m a (D.14)

compare with [118]. For simplicity, we restrict to uniform circular
motions.
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In the plane consider two point masses M (the sun) and m (a planet).
Let x and y be cartesian coordinates and set

r(t ) =
µ

x(t )
y(t )

∂
.

The sun is positioned at the origin and the planet moves in a uni-
form circular orbit

r(t ) = R
µ
cos

°2º
T t

¢

sin
°2º

T t
¢
∂

, (D.15)

so with radius R and period of revolution T .

1. Under the assumption of a Newtonian inverse square central
force

F =°kMm
r 2 er , (D.16)

where er is the unit vector in the radial direction, show that

T = cst.R3/2 ,

and determine the constant. This result is known as Kepler’s
third law or also as Kepler’s 3/2 law.

2. What changes in the above when Newton’s inverse square law
is replaced by

F =°kMm
r ∑

er (D.17)

for a constant ∑ 6= 0?

Remark 47. 1. For completeness we also briefly discuss Kepler’s
first two laws for planetary motion. The first is that the planet
travels along an ellipse with the sun in one of its focal points.
The second law says that in equal times the radius r of the
planet sweeps out equal areas. Note that the motion (D.15)
surely is in agreement with these two laws.
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By the way, in Arnold [5, Section 7], it is shown that Kepler’s
second law holds for any central force field (D.17).

2. From the above exercise is follows that the inverse square at-
traction law is equivalent to Kepler’s third law. Until the early
1680’s Newton (and some of his contemporaries) understood
that the sun attracts each planet according to the inverse square
law, but there was no mention yet of mutual interaction be-
tween the planets or of universal gravitation.

Then Newton proposes the following crucial experiment: he
asks the First Astronomer Royal John Flamsteed to check Ke-
pler’s third law on the four Galilean moons of Jupiter, which
happen to follow almost circular orbits. After an affirmative
answer, Newton concludes that Jupiter also attracts its moons
with the inverse square law and only then he dares to postu-
late the law of universal gravitation. See Westfall [157].

Newton immediately realized that this was the end of all these
beautiful Keplerian ellipses, since these were perturbed by their
mutual gravitational interactions. This may well have given
him severe headaches but it also marked the onset of ages of
perturbation theory.
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E.1. Exercises from Section 1.6

E.1.1. Exercise 1.6.1: The vertical spring

1. Since m is at rest, the sum of the gravitational force °mg and
the spring force °kx should be equal to 0. This means that
°mg °kx = 0, and therefore that the position is x =°mg /k.

2. Newton’s law gives

mẍ =°kx °mg .

We can use the change of variables s(t ) = x(t ) + mg
k , which

shifts the rest position to 0, to get to the following equation of
motion

ms̈ =°ks .

3. We already know the solutions of this equation of motion,
namely

s(t ) = A cos

0
@
s

k
m

t

1
A+B sin

0
@
s

k
m

t

1
A .

For x <D-s>therefore we find the solutions

x(t ) =°mg
k

+ A cos

0
@
s

k
m

t

1
A+B sin

0
@
s

k
m

t

1
A .

E.1.2. Exercise 1.6.2: The horizontal pendulum

Since there are no forces in the direction of the motion, the equation
of motion is

`ẍ = 0 or ẍ = 0.
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E.1. Exercises from Section 1.6

The corresponding solutions are of the form x(t ) = At +B , where
A = dx

dt (0) and B = x(0).

Figure E.1: Phase portrait of the horizontal pendulum

Since the potential energy in this example is identically zero, the
energy here is H(x, y) = 1

2`
2 y2, and so the integral curves are hori-

zontal lines, while all points on the x axis are singular. This horizon-
tal pendulum can be considered as the limit of an ordinary vertical
pendulum when we let the gravity g go to zero. Furthermore, as
E ! 1 (E being the value of the energy), there is increasingly less
difference between the solutions of the equation of motion of the
horizontal and the vertical pendulum.

E.1.3. Exercise 1.6.3: Symmetries of the line element
field

In the direction (ª,¥) defined at (x, y) we have

°F (x)ª+ y¥= 0,

215



E. Solutions of selected exercises

and therefore

°F (x)ª+ (°y)(°¥) = 0.

It follows that the line element field is symmetrical under the reflec-
tion on the x-axis.

Let now the direction in (x,0) be given by (ª,¥). Then, by the above
discussion (ª,¥) and (ª,°¥) correspond to the same direction and
therefore ª= 0 or¥= 0. From the formula for the line element field it
follows that at a point (x,0) for which F (x) 6= 0, the direction is verti-
cal (i.e., in the y direction), while at a point (x,0) for which F (x) = 0,
we have a singularity.

When the map x 7! y(x) defines an integral curve, by the symmetry,
x 7! °y(x) also defines an integral curve. The “motions” associated
with these integral curves are each other’s “inverse” in the sense that
the latter in x can be obtained by performing the former backward
in x. The integral curve and its mirror image may or may not be
equal, as you can see in Figure E.2. (What does the potential V (x)
look like?)

E.1.4. Exercise 1.6.4: Ellipses and time rescalings on
the spring

The equation of motion is ẍ = °kx, the potential energy is V (x) =
1
2 kx2 and the total energy is H(x, y) = 1

2 y2 + 1
2 kx2, where y = ẋ.

1. The energy level for some energy E is described by the equa-
tion 1

2 y2 + 1
2 x2 = E . Curves described by such an equation are

called ellipses (see Figure E.3).

2. Substituting y = z
p

k in the equation for the energy level with
value E gives 1

2 kx2 + 1
2 kz2 = E : the equation of a circle.
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Figure E.2: Integral curves for a given force F = F (x)

Figure E.3: Elliptic integral curve
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3. For ø =
p

k t the chain rule gives that dx
dø = 1p

k
dx
dt and thus

d2x
dø2 = 1

k
d2x
dt 2 =°x. That is, the transformation z = 1p

k
y has the

same effect as the time rescaling z = dx
dø .

E.1.5. Exercise 1.6.5: Energies and amplitudes

An oscillation with energy E occurs between xmin and xmax; since
at maximum deviation the velocity and therefore the kinetic energy
vanishes, these values of x satisfy V (x) = E . Therefore, the ampli-
tude is 1

2 (xmax °xmin) .

Figure E.4: Oscillations bounds for the two potentials in Exercise 1.6.5

In the first case, we get xmax = °xmin =
q

2E
k and this is the ampli-

tude. Similarly for the second potential we find the amplitude

arccos
µ°`E

g

∂
,

where° g
` ∑ E < g

` . For the other values of E there is no oscillation.
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E.1.6. Exercise 1.6.6: Phase portraits

The integral curves are of the form y(x) = ±
p

2E °V (x). So for so-
lutions above the x axis local maxima and local minima of V corre-
spond to local minima, resp. maxima, of the function x 7! y(x) that
defines the integral curve. Moreover, the local maxima and min-
ima of V correspond to singularities of the line element field on the
x-axis. The configuration of integral curves in such configurations
depends on whether there is a local maximum or local minimum,
see Figure E.5.

Figure E.5: Left: integral curves around a local minimum of V , this singu-
larity is called a center; Right: integral curves around a local maximum of
V , this singularity is called a saddle point

Horizontal asymptotes correspond to a separation between integral
curves that go to infinity and bounded integral curves.

In Figure E.6 we drew the phase portraits associated with the poten-
tials in Figure 1.19.
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Figure E.6: Phase portraits for the potentials in Exercise 1.6.6

Figure E.7: Cycloid and its arclength
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E.1.7. Exercise 1.6.7: The cycloid

1. Let (x, y,') be the variables as indicated in Exercise 1.6.7 and
the figure therein. The parametrization of the center of the
wheel then is given by x(') =°R', y(') = R. The vector from
the center of the wheel to the valve is (°R sin',°R cos'), which
leads to the following parametrization of the valve:

x(') =°R('+ sin'), y(') = R(1°cos').

2. The figure is symmetric with respect to the y-axis, see Fig-
ure E.7 (just replace ' with °'). At a point with horizontal
tangent line we get dy

d' = 0 or R sin' = 0. Such points, there-
fore, occur for'= kº or x = Rk¡. Similarly we can determine
points with a vertical tangent line and so obtain the points
x = (2k + 1)Rº, y = 2R. Finally, at ' = (k + 1/2)º we have
y(') = R.

NB: in the points x = (2k+1)Rº, y = 2R, there is both a vertical
and a horizontal tangent. The curve has a cusp there.

3. We indicate the position of the bead (or marble) with the dis-
tance, measured along the cycloid, from the bead to the low-
est point of the curve. Since the position of the bead is (°R('+
sin'),R(1°cos')), from the previous discussion we obtain

s(') = 2
p

2R
p

1°cos'= 4R sin
°

1
2'

¢
,

which can be interpreted as an arclength ‘with sign’; so the
variable s can serve as a new coordinate.

4. The proof is part of the above item.

E.1.8. Exercise 1.6.8: Huygens’ isochronous and
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tautochronous curve

The potential energy here is the height in the y coordinates, thus

V (s(')) = R(1°cos') = s(')2

8R . This means that the potential energy
associated to this exercise reads V (s) = 1

8R s2. Therefore the motion
is harmonic. This proves the isochronicity of the motion. For the
tautochronicity we observe that dropping the bead from a certain
height amounts to one-quarter of an oscillation.

Note that if we are working with the potential energy, we have to use
“real distances” to indicate the position, see also in Section 1.4.1,
when defining

V (x) =°
Zx

0
F (s)ds .

E.1.9. Exercise 1.6.9: Period and area

We don’t present a rigorous proof here, but rather an argument based
on working with “infinitesimal quantities” such as dE ,dx, etc.

We aim to show that the area of the region between H(x, y) = E and
H(x, y) = E +dE is equal to P (E)dE , see Figure 1.20. Indeed, if we
denote the enclosed areas by A(E) and A(E +dE) then this would
mean that

A(E +dE)° A(E) = P (E)dE ,

which would prove our point.

We know that H(x, y) = 1
2 y2 +V (x). This means that the intersec-

tions of the line with equation x = x0 with the energy levels E and
E +dE (above the x-axis) have y-coordinates

y0 =
p

E °V (x0) and
p

2(E +dE °V (x0)) .
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Since dE is supposed to be a small quantity, we can rewrite the latter
expression as

y0 +
dy0

dE
dE = y0 +

dE
p

2(E °V (x0))

= y0 +
dE
y0

.

The distance between these two points is therefore equal to dE di-
vided by the velocity y0. This, indeed, means that the shaded area
in Figure 1.20 must be equal to dE £dt , where dt is the time the os-
cillator needs to travel from x0 to x0+dx. We can now integrate this
and find the following expression for the area between the energy
levels for E and E +dE

µ
2
Zxmax

xmin

1
y0(x0)

dx0

∂
dE .

We already know that the expression in brackets denotes the pe-
riod.

E.1.10. Exercise 1.6.10: Elliptic integrals

Using the substitution z = cos x gives dz =°sin x dx and

dx =° 1
sin x

dz =° 1
p

1° z2
dz .

Note that since sin x =±
p

1°cos2 x, we here made a small omission
. . . We then obtain
Z

dx
p

2cos x +C
=°

Z
dz

p
1° z2

p
C +2z

=°
Z

dz
p

C +2x ° cz2 °2z3
.

This final equation has the desired shape.
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For the length of the ellipse, we start with (ds)2 = (dx)2 + (dy)2 so

ds =

s

1+
µ

dy
dx

∂2

.

To compute dy
dx we write y as a function of x and then differen-

tiate. Recalling that an ellipse is the solution set of x2

a2 + y2

b2 = 1,

we have y2 = b2(1° x2/a2) or y = b
p

1°x2/a2. Therefore, we get
dy
dx =° bx

a
p

a2°x2
, and

ds =

s

1+ b2x2

a4 °a2x2 dx

=

s
a4 °a2x2 +b2x2

a4 °a2x2 dx

= a4 °a2x2 +b2x2

p
(a4 °a2x2 +b2x2)(a4 °a2x2)

dx ,

so that now
R

ds indeed takes the desired form.

E.1.11. Exercise 1.6.11: The potential energy of the
pendulum

Let us indicate our new variable, the arclength, by
u. Then we have u = `x. The equation of motion
then is given by

d2

dt 2 (`x) =°g sin x ,

wich can be rewritten as

ü =°g sin
u
`
= F (u) .
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If we use this to compute the potential energy, we find

V (u) =°
Zu

0
F (s)d s

=
Zu

0
g sin

s
`

ds

=°`g cos
s
`
|s=u
s=0

= g`(1°cos
u
`

).

If you instead calculate the potential energy using the formula

d2x
dt 2 =°g sin x = F (x),

you get V (x) = g
` (1° cos x) which is wrong. Nevertheless, you can

find the correct equation of motion in this way . . .

E.2. Exercises from Section 2.6

E.2.1. Exercise 2.6.1: Negative damping

With the help of the chain rule we get

dx
dø

= dx
dt

dt
dø

=°dx
dt

,

d2x
dø2 = d

dt

µ
dx
dø

∂
dt
dø

= d2x
dt 2 .

So, the equation
d2x
dt 2 =°dV

dx
° c

dx
dt

(E.1)

transforms to
d2x
dø2 =°dV

dx
+ c

dx
dø

.

225



E. Solutions of selected exercises

Indeed we see that the transformation ø = °t reverses the sign of
the friction term. If we know the phase portrait of an oscillator, or
even for the solutions of a general equation of the form (E.1), then,
after applying the change of variable ø = °t , we can get the phase
portrait after transformation as follows:

• We flip the image around the x-axis (after all dx
dø =°dx

dt );

• We reverse the directions of the arrows (after all, the arrows
indicate the direction of the time).

It may be clear now, that with negative damping the energy will in-
crease. Here you can also see that when there is no friction, the
transformation ø=°t does not change the equation (compare this
with Exercise 1.6.1).

E.2.2. Exercise 2.6.2: Tossing a fair coin

We first give the phase portrait of the frictionless equation that we
find by determining the level curves of H(x, y) = 1

2 y2 +V (x). There
are three types of oscillations.

1. Oscillations where the the x–variable is always positive (for
small energies these are very close to the point x = 1);

2. Oscillations where the x–variable is always negative;

3. Oscillations where x changes sign twice in each period. For
this kind of oscillation, the amplitude is greater than

p
2. These

regions of oscillation are separated from each other by a “fig-
ure 8” consisting of one saddle point (x, y) = (0,0) and two so-
lutions which converge to (x, y) = (0,0) both as t ! +1 and
as t !°1.
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Figure E.8: Left: phase portrait of frictionless system from Exercise 2.6.2;
Right: phase portrait after introducing friction.

As a result of adding friction, the motion continuously loses energy.
If we assume that the friction is low, we will get approximately the
phase portrait on the right-hand side of Figure E.8. In this case we
have only shown the solutions that reach the saddle point as t !
+1 or t !°1. All other solutions will converge to x = 1 or x =°1
as t !1.

If we denote by L the part of the phase plane where the solutions
converge to x =°1 and by R the part where the solutions go to x = 1,
then we can see that L and R have “the same shape”: by reflection in
the x-axis, L is mapped to R en vice versa. If we choose a “random
point” in the phase plane, then the probability that the correspond-
ing solution goes to x = °1 (heads) is just as large as the one that
it goes to x = 1 (tails); the probability of the solution going to the
saddle point is zero. (Why?)
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E.2.3. Exercise 2.6.3: A “controlled” oscillator

The integral curves are composed of semicircles. In the positive
half-plane (y > 0) these are semicircles with center (x, y) = (°a,0),
and in the negative half-plane semicircles with center (x, y) = (a,0).
For y = ẋ = 0 our equation is actually not defined. Outside the inter-
val from x =°a to x = a on the x-axis, we can continue the solutions
continuously, but not in this interval. The displacement of the cen-

Figure E.9: A controlled oscillator

ter of a harmonic oscillator can be described in terms of the appli-
cation of a constant external force. We can therefore also interpret
our equations of motion as a harmonic oscillator (with center zero)
on which an extra force of size a acts in a direction that is always op-
posite to the motion. This means that the extra force behaves like
dry friction.
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E.2.4. Exercise 2.6.4: A damped oscillator with
forcing

1. We compute the energy as the integral of the product of force
and speed. The desired amount of energy then is
Z 2º

≠

0
F

dx
dt

dt =
Z 2º

≠

0
AB≠ sin(≠t )cos(≠t +¡)dt

= AB≠
Z 2º

≠

0
sin(≠t )

°
cos(≠t )cos(¡)° sin(≠t )sin(¡)

¢
dt

=°ABº sin¡ .

2. By the same reasoning we now find
Z 2º

≠

0
c

µ
dx
dt

∂2

dt = cB 2≠2
Z 2º

≠

0
cos2(≠t +¡)dt

= cB 2≠º.

3. Since the motion is periodic, the energy absorbed and the en-
ergy delivered must be equal per period. Using the above re-
sults we find

°A sin¡= cB≠ . (E.2)

Since A,B ,c,≠ are all positive, necessarily sin¡< 0.

4. Since here the mass equals 1, the force must be equal to the
acceleration, which is = B≠2. This, in turn, must be equal
to the sum of the oscillating force °B and the external force
A sin( 1

2º°¡). Therefore

°B≠2 =°B + A sin
°

1
2º°¡

¢
=°B + A cos¡ ,

which implies
A cos¡= B(a °≠2) . (E.3)

229



E. Solutions of selected exercises

5. The ratio of (E.2) and (E.3) gives

tan¡= c≠
1°≠2 .

Using the identity

sin¡=°
s

tan2(¡)
1+ tan2(¡)

,

where the minus sign follows from the third item above, we
obtain

sin¡=°c≠

s
1

c≠2 + (1°≠2)2 .

The latter, replaced in (E.2) gives

B = A
p

c≠2 + (1°≠2)2
.

E.2.5. Exercise 2.6.5: The Van der Pol-Liénard
differential equation

Figure E.10: Exercise 2.6.5
Left: phase portrait of the second and third case; Right: phase portrait of the
fourth case

a) See Figure 2.19;
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b) See the left-hand side related to Figure E.10;

c) See the left-hand side related to Figure E.10 (this is no
mistake, they are effectively the same);

d) See the right-hand side related to Figure E.10;

e) See Figure E.11. In this case, if the solution approaches
P or Q, there will be another (short) time interval in which
the rapid motion of the second equation dominates. This
is due to the fact that the solution can no longer followß:
for example near P the solution must move to the right
(y > 0) and thus will have to move away from ß.

Figure E.11: Exercise 2.6.5, last case

For µ∏ 0, the phase portrait of

ẋ = y, ≤ẏ =°(x +µy + y3)

is not essentially different from the right-hand side of Fig-
ure E.10: all the solutions eventually will go to the origin. For
µ < 0, on the other hand, we get a phase portrait similar to
Figure E.11.
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It can be shown that for µ < 0 our equation has a periodic
solution, i.e., a solution (x(t ), y(t )) such that there is certain
period T > 0 for which x(t + T ) = x(t ) and y(t + T ) = y(t )
for all t 2 R. Moreover, all solutions will approach this peri-
odic solution, with the only exception of x(t ) = 0 = y(t ). As µ
approaches 0, the periodic solution, as a figure in the phase
plane, becomes smaller and approaches the origin. See also
Section 3.4.

E.3. Exercise from Chapter 3: On Hooke’s
n–body problem

Solution of Part 1. The solution consists of two steps.

The Steiner ellipse. Let Z be the center of mass of A1 A2 A3. Then
the Steiner ellipse S of A1 A2 A3 exactly is the ellipse passing
through the vertices A1, A2 and A3, that has Z as its center.
Moreover, the areas of the sectors A1Z A2, A2Z A3 and A3Z A1

of S are equal.

Proof. The assertion is obviously true for an equilateral tri-
angle, in which case the Steiner ellipse is the circumscribed
circle. Now there exists an affine transformation F from the
equilateral triangle to A1 A2 A3 and this transformation has the
following properties:

1. F preserves the center of mass;

2. F preserves the parallelism of straight lines and hence
maps the circumscribed circle to S;

232
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3. F maps equal areas to equal areas.

The latter follows since F multiplies all areas by a fixed con-
stant (a Jacobian determinant). From this the assertion fol-
lows.

Equation of motion. Let r denote the position of P with respect
to Z . Then its equation of motion is

r̈ =°3kr .

Proof. Let ai denote the position vector of Ai with respect to
Z (i = 1,2,3). Then Fi = k(ai ° r) and therefore for the total
force F we have

F = F1 +F2 +F3 =°3kr+k(a1 +a2 +a3) =°3kr .

From this the assertion follows by Newton’s second law.

From the latter assertion, it directly follows that the possible mo-
tions of P are all Lissajous ellipses with center Z . One of these is the
Steiner ellipse S. It also follows that the motion of P takes place in a
central force field where Kepler’s second law holds true: equal areas
are swept out at equal times. In view of the former assertion this
solves the problem.

Solution of Part 2.

Let particle Ai have the three-dimensional position xi . Then the
equations of motion read

mi ẍi =
nX

j=1
k2mi m j

°
xj °xi

¢
, (i = 1,2, . . . ,n) .
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Let

z = 1
M

nX

j=1
m j x j

be the center of mass, where M =Pn
j=1 m j . It then follows that

ẍi = k2Mz°k2M ẋi .

Summation yields that M z̈ = 0, i.e., the center of mass moves uni-
formly. The relative motion of the particle Ai (i = 1,2, . . . ,n) with
respect to z moreover is given by

ẍi +k2Mxi = 0 (i = 1,2, . . . ,n) ,

which describes a system of three decoupled harmonic motions.
This leads to 3–dimensional Lissajous figures. We shall now argue
why this still is a planar Lissajous ellipse.

Indeed, the projection in all three coordinate directions form 2–
dimensional Lissajous figures. Since all frequencies are equal, the
latter are just planar Lissajous ellipses. But then the 3–dimensional
Lissajous figure also is an ellipse moving in a plane that is generic
with respect to the coordinate directions. Thus each particle Ai

moves in a plane along a Lissajous ellipse with center z and period
T = 2º/k

p
M .

E.4. Exercise from Appendix B: One more
Hookian problem

For i = 1,2,3 let xi denote the position of Pi on `i , measured from
O, and with all xi of the same sign in the same ‘half’ of the cone.
We write x = (x1, x2, x3)T as a vector. This is a linear problem with
kinetic energy T and potential energy U , which read

T = 1
2 (ẋ2

1 + ẋ2
2 + ẋ2

3)
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and

U = 1
2 k2

≥
P1P2

2 +P2P3
2 +P3P1

2
¥

= 1
2 k2(x2

1 +x2
2 +x2

3 °x1x2 cosÆ°x2x3 cosÆ°x3x1 cosÆ) .

So in the format T = 1
2 hAẋ, ẋi and U = 1

2 hBx,xiwe have A = Id, while

B = k2

0
@

2 °cosÆ °cosÆ
°cosÆ 2 °cosÆ
°cosÆ °cosÆ 2

1
A

Direct computation yields that B has a single eigenvalue!2
1 = 2k2(1°

cosÆ) and a double eigenvalue!2
2 = 2k2(1+cosÆ). The correspond-

ing eigenspaces are the diagonal

2
4

0
@

1
1
1

1
A
3
5

R

,

where [°] takes the linear span, and its orthogonal complement,
which is the plane given by the equation x1 +x2 +x3 = 0. The corre-
sponding characteristic oscillations are as follows.

1. The three particles oscillate in an equilateral triangle perpen-
dicular to the diagonal with characteristic frequency

!1 = k
p

2
p

1°cosÆ ;

2. The vector x oscillates in the plane x1+x2+x3 = 0 in Lissajous
ellipses, with characteristic frequency

!2 = k
p

2
p

1+cosÆ .
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E.5. Exercise from Appendix D: On
Kepler’s third law

Given the uniform circular motion with period T and radius R, the
velocity is

v(t ) =
µ

ẋ(t )
ẏ(t )

∂
= R

µ
°2º

T sin
°2º

T t
¢

2º
T cos

°2º
T t

¢
∂

and the (centripetal) acceleration

a(t ) =
µ

ẍ(t )
ÿ(t )

∂
= R

√
°

°2º
T

¢2
cos

°2º
T t

¢

°
°2º

T

¢2
sin

°2º
T t

¢
!
=°R

µ
2º
T

∂2

er .

Combining (D.14) and (D.16) now gives

ma =°mR
µ

2º
T

∂2

er =°kMm
R2 er

and so

T 2 = 4º2

kM
R3 ,

which amounts to Kepler’s third law for this case of circular motion.
The answer in the case when the central force has size °kMm/R∑

reads

T 2 = 4º2

kM
R∑+1 .

By the way, the case where ∑ = °1 corresponds exactly to Hooke’s
universe of an exercise in Section 3.5, where the motion is isochro-
nous. For a neat connection between the Hookian and the Newto-
nian ellipse see Arnold [8, Appendix 1].

236



Bibliography

[1] J.M. Aarts, Christiaan Huygens: Het Slingeruurwerk. Een studie.
Epsilon Uitgaven 80 2015

[2] H. Aldersey-Williams. Dutch Light. Christiaan Huygens and the
Making of Science in Europe. Pan Macmillan 2021

[3] C. Andriesse, Titan kan niet slapen, biografie van Christiaan
Huygens. Olympus Pockets 2007

[4] T.M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with
an Introduction to Linear Algebra. Second edition. John Wiley
1967

[5] V.I. Arnold, Mathematical Methods of Classical Mechanics.
GTM 60 Springer 1978; second edition, Springer 1989

[6] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Dif-
ferential Equations. Springer 1983

[7] V.I. Arnold, Catastrophe theory (Third edition). Springer-Verlag
1992

[8] V.I. Arnold, Huygens & Barrow, Newton & Hooke. Birkhäuser
1990

[9] V.I. Arnold, Mathematical Understanding of Nature: Essays

237



Bibliography

on Amazing Physical Phenomena and Their Understanding by
Mathematicians. AMS 2014

[10] V.I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique
Classique. Gauthier-Villars 1967; Ergodic Problems of Classical
Mechanics. Addison-Wesley 1989

[11] V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singulari-
ties of Differentiable Maps Volume 1: Classification of Critical
Points, Caustics and Wave Fronts. Modern Birkhäuser Classics,
Birkhäuser 1985

[12] V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical As-
pects of Classical and Celestial Mechanics. In: V.I. Arnol’d (ed.)
Dynamical Systems III. Encyclopædia of Mathematical Sci-
ences 3 Springer 1988

[13] A. Avila, B. Fayad and R. Krikorian, A KAM scheme for SL(2R)
cocycles with Liouvillean frequencies. Geom. Funct. Anal. Vol.
21 (2011) 1001-1019

[14] A. Avila and S. Jitomirskaya. Solving the Ten Martini Problem.
In: J. Asch, A. Joye (eds.), Mathematical Physics of Quantum
Mechanics. Lecture Notes in Physics, vol 690. Springer 2006

[15] A. Avila and S. Jitomirskaya. The Ten Martini problem.
Ann. Math. (2) 170(1) 303-342 (2009)

[16] P. Bak and R. Bruinsma, One-Dimensional Ising Model and the
Complete Devil’s Staircase. Phys. Rev. Lett. 49 (1982) 249

[17] Arnd Bäcker, Eigenfunctions in chaotic quantum
systems. Habilitations thesis. TU Dresden (2007)
https : / / nbn-resolving . org / urn : nbn : de : bsz :
14-ds-1213275874643-50420

238

https://nbn-resolving.org/urn:nbn:de:bsz:14-ds-1213275874643-50420
https://nbn-resolving.org/urn:nbn:de:bsz:14-ds-1213275874643-50420


Bibliography

[18] D.G.M. Beersma, H.W. Broer, K. Efstathiou, K.A. Gargar and
I. Hoveijn, Pacer cell response to periodic Zeitgebers. Physica
D: Nonlinear Phenomena 240(19) (2011) 1516-1527

[19] M. Benedicks and L. Carleson, The dynamics of the Hénon
map. Ann. Math. 133 (1991) 73-169

[20] M. Bennett, M.F. Schatz, H. Rockwood and K. Wiesenfeld, Huy-
gens’ clocks. Proc. R. Soc. Lond. A 458 (2002) 563-579

[21] J. Bernoulli, Opera Johannis Bernoullii (G. Cramer ed.; 4 vols),
Genève 1742

[22] M. Berry, Quantum physics on the edge of chaos. New Scientist
19 November 1987

[23] H.M. Bos, Huygens, Christiaan (Also Huyghens, Christian).
Complete Dictionary of Scientific Biography Encyclopedia.com
2012

[24] O. Bottema, Problem 673, Nieuw Archief voor Wiskunde 2 1
(1983)

[25] O. Bottema, Problem 683, Nieuw Archief voor Wiskunde 3 1
(1983)

[26] O. Bottema, Problem 701, Nieuw Archief voor Wiskunde 2 2
(1984)

[27] A. Bravetti, M. Seri, M. Vermeeren, F. Zadra, Numerical integra-
tion in Celestial Mechanics: a case for contact geometry Celes-
tial Mechanics and Dynamical Astronomy 132 (2020)

[28] H.W. Broer, KAM theory: The legacy of Kolmogorov’s 1954 pa-

239



Bibliography

per. Bulletin of the American Mathematical Society 41(4) (2004)
507-521

[29] H.W. Broer, Resonance and fractal geometry. Acta Applicandae
Mathematicæ 120 DOI 10.1007/s10440-012-9670-x (2012) 61-
86

[30] H.W. Broer, Hemelverschijnselen Nabij de Horizon. Epsilon Uit-
gaven 77 2013

[31] H.W. Broer, Bernoulli’s light ray solution of the brachis-
tochrone problem through Hamilton’s eyes. Int. J. Bifurcations
Chaos 24:1440009, 2014

[32] H.W. Broer, Near the Horizon: an Invitation to Geometric Op-
tics. The Carus Mathematical Monographs 33 MAA 2016

[33] H.W. Broer, J. Epema and M. Kuipers, Oscillaties: trillingen en
slingerbewegingen vanuit wiskundig oogpunt. Internal Publi-
cation Rijksuniversiteit Groningen 1987

[34] H.W. Broer and H. Hanßmann, On Jupiter and his Galilean
satellites: librations of De Sitter’s periodic motions. Indag
Math NS 27(5) (2016) 1305-1337

[35] H.W. Broer and H. Hanßmann, A Galilean dance: 1:2:4 reso-
nant periodic motions and their librations of Jupiter and his
Galilean moons. DCDS-S 13(4) (2020) 1043-1059

[36] H.W. Broer, H. Hanßmann, Á. Jorba, J. Villanueva and
F.O.O. Wagener, Normal-internal resonances in quasi-
periodically forced oscillators: a conservative approach.
Nonlinearity 16 (2003) 1751-1791

[37] H.W. Broer, H. Hanßmann and F.O.O. Wagener, Quasi-periodic

240



Bibliography

bifurcation theory. The geometry of KAM. Springer Verlag, in
preparation

[38] H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-periodic
tori in families of dynamical systems: order amidst chaos.
Springer LNM 1645 (1996) (195 p)

[39] H.W. Broer and B. Krauskopf, Chaos in periodically driven sys-
tems. In: B. Krauskopf and D. Lenstra (eds.), Fundamental Is-
sues of Nonlinear Laser Dynamics. Amer. Inst. Phys. (2000) 31-
53

[40] H.W. Broer and M. Levi, Geometrical aspects of stability theory
for Hill’s equations. Archive Rat. Mech. An. 131 (1995) 225-240

[41] H.W. Broer, J. Puig and C. Simó, Resonance tongues and insta-
bility pockets in the quasi-periodic Hill-Schrödinger equation.
Commun. Math. Phys. 241 (2003) 467-503

[42] H.W. Broer and M.B. Sevryuk, KAM Theory: Quasi-periodicity
in Dynamical Systems. In H.W. Broer, B. Hasselblatt and F. Tak-
ens (Eds.), Handbook of Dynamical Systems 3 North-Holland
Ch. 6, 2010

[43] H.W. Broer and C. Simó, Resonance tongues in Hill’s equations:
a geometric approach. Journ. Diff. Eqns. 166 (2000) 290-327

[44] H.W. Broer, C. Simó and J.C. Tatjer, Towards global models near
homoclinic tangencies of dissipative diffeomorphisms. Non-
linearity 11 (1998) 667-770

[45] H.W. Broer and H.S.V. de Snoo, Mathematische Fysica in
Groningen I: Van Mees tot Zernike. Nederlands Tijdschrift voor
Natuurkunde to appear

241



Bibliography

[46] H.W. Broer and F. Takens, Dynamical Systems and Chaos. Ep-
silon Uitgaven 64 2009; Appl. Math Sc. 172 Springer 2011

[47] H.W. Broer and G. Vegter, Bifurcational aspects of parametric
resonance. Dynamics Reported, New Series 1 (1992) 1-51

[48] H.W. Broer and Lei ZHAO, De Sitter’s theory of Galilean satel-
lites and the related quasi-periodic orbits. Celest. Mech. Dyn.
Astr. 127 (2017) 95-119

[49] A. Celletti, Analysis of resonances in the spin-orbit problem
in celestial mechanics: The synchronous resonance, Part I J.
Appl. Math. Phys. (ZAMP) 41, 174; Part II: ZAMP 41, 453 (1990)

[50] A. Correia and J. Laskar, Mercury’s capture into 3/2 spin-orbit
resonance as a result of its chaotic dynamics. Nature 429
(2004) 848-850

[51] N. Chernov, R. Markarian, Chaotic billiards. Mathematical Sur-
veys and Monographs, vol. 127. AMS 2006

[52] I. De Blasi, S. Terracini, Refraction periodic trajectories in cen-
tral mass galaxies, Nonlinear analysis, 218 112766 (2021)

[53] I. De Blasi, S. Terracini, On some Refraction Billiards, arXiv
preprint, arXiv:2108.11159 (2021)

[54] A. Celletti and L. Chierchia Measures of basins of attraction in
spin-orbit dynamics. Celest Mech Dyn Astr (2008) 101:159-170
DOI 10.1007/s10569-008-9142-9

[55] A. Celletti and L. Chierchia Quasi-Periodic Attractors in Celes-
tial Mechanics Arch. Rational Mech. Anal. 191 (2009) 311-345
(DOI) 10.1007/s00205-008-0141-5

242



Bibliography

[56] R.L. Devaney, An Introduction to Chaotic Dynamical Systems
Second Edition. Addison Wesley 1989

[57] F.J. Dijksterhuis, Lenses and waves: Christiaan Huygens and
the Mathematical Science of Optics in the Seventeenth Century.
Springer 2004

[58] E.I. Dinaburg and Ya.G. Sinai, The one-dimensional
Schrödinger equation with quasiperiodic potential. Funk-
tsional. Anal. i Prilozhen. 9(4) (1975) 8-21

[59] J.P. Eckann and D. Ruelle, Ergodic theory of chaos and strange
attractors. Reviews of Modern Physics. 57(3) (1985) 617-656

[60] M. Einsiedler, T. Ward, Ergodic Theory with a view towards
Number Theory. GTM 259 Springer 2011

[61] L.H. Eliasson, Floquet solutions for the one-dimensional
quasi-periodic Schrödinger equation. Commun. Math. Phys.
146 (1992) 447-482

[62] L.H. Eliasson, Discrete one-dimensional quasi-periodic
Schrödinger operators with pure point spectrum, Acta Math.
179 (1997) 153-196

[63] R. Engelking, General Topology. - Revised and Completed Ed.
Helderman 1989

[64] Euclid, The thirteen books of the Elements. Three volumes
translations and commentary by T.L. Heath. Dover 1956

[65] L. Euler, Leonhardi Euleri Opera Omnia. 72 vols. Bern 1911-
1975

243



Bibliography

[66] K.J. Falconer, The Geometry of Fractal Sets. Cambridge Univer-
sity Press 1985

[67] K.J. Falconer, The Fractal Geometry. Wiley 1990

[68] M.J. Feigenbaum, Universal behavior in nonlinear systems.
Physica D: Nonlinear Phenomena. 7 (1-3) (1983) 16-39

[69] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lec-
tures on Physics Vols. 1, 2 and 3. Addison-Wesley 1963, 1964
and 1965

[70] Press release: Fields Medal 2014, Arthur Avila.
https://www.mathunion.org/fileadmin/IMU/Prizes/
Fields/2014/news_release_avila2.pdf Accessed on Fri.
10 Jun 2022.

[71] G. Gallavotti, G. Gentile and V. Mastropietro, Field theory and
KAM theory. MPEJ 1 1995

[72] A. Di Gioacchino, M. Gherardi, L.G. Molinari, P. Rotondo. Jack
on a Devil’s Staircase. In: P. Bortignon, G. Lodato, E. Meroni,
M. Paris, L. Perini, A. Vicini (eds.) Toward a Science Campus in
Milan. CDIP 2017. Springer 2018

[73] Press release: Nobel Prize in Physics 1998.
https://www.nobelprize.org/prizes/physics/1998/
press-release/ Accessed on Fri. 10 Jun 2022.

[74] I. Gkolias, C. Efthymiopoulos, A. Celletti, G. Pucacco, Hamil-
tonian formulation of the spin-orbit model with time-varying
non-conservative forces Commun Nonlinear Sci Numer Simu-
lat 51 (2017) 23-38

[75] I. Gkolias, C. Efthymiopoulos, A. Celletti, G. Pucacco, Accu-

244

https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/2014/news_release_avila2.pdf
https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/2014/news_release_avila2.pdf
https://www.nobelprize.org/prizes/physics/1998/press-release/
https://www.nobelprize.org/prizes/physics/1998/press-release/


Bibliography

rate modelling of the low-order secondary resonances in the
spin-orbit problem Commun Nonlinear Sci Numer Simulat 77
(2019) 181-202

[76] H. Goldstein, Classical Mechanics. Addison-Wesley 1950 (sec-
ond edition 1980)

[77] H.H. Goldstine, A History of the Calculus of Variations from the
17th through the 19th Century. Studies in the History of Math-
ematics and Physical Sciences 5 Springer 1980

[78] P. Goldreich, S. Peale, Spin-orbit coupling in the solar system.
The Astronomical Journal 71 (1966)

[79] K.P. Hart, De Cycloïde. Pythagoras 39(4) 2000

[80] F. Hausdorff, Set Theory. Second Edition. Chelsea 1962

[81] H. Helmholtz. Theorie der Luftschwingungen in Röhren mit
offenen Enden J. reine angew. Math. 57 (1860) 1-72

[82] M. Hénon, A two-dimensional mapping with a strange attrac-
tor. Commun. Math. Phys. 50 (1976) 69-77

[83] M. Hendriks, Introduction to Physical Hydrology. Oxford Uni-
versity Press 2010

[84] J. Henrard, Capture into resonance: An extension of the use of
adiabatic invariants. Celestial Mechanics 27 (1982) 3-22

[85] M. Herman, Une méthode pour minorer les exposants de Lya-
pounov et quelques exemples montrant le caractère local d’un
théorème d’Arnold et de Moser sur le tore de dimension 2,
Comment. Math. Helv. 58:3 (1983) 453-502

245



Bibliography

[86] M. Herman, Sur la conjugaison différentiable des difféomor-
phismes du cercle à des rotations. Publ. Math. IHES 49 (1979)
5-234

[87] A. L. Hodgkin and A. F. Huxley, A quantitative description of
membrane currentand its application to conduction and exci-
tation in nerve. J. Physiol. 117 (1952) 500-544

[88] R.A. Horn, C.R. Johnson, Matrix analysis. Second edition.
Cambridge University Press 2013

[89] D.R. Hofstadter. Energy levels and wavefunctions of Bloch
electrons in rational and irrational magnetic fields. Physical
Review B. 14 6 (1976)

[90] M.W. Hirsch, S. Smale and R.L. Devaney, Differential Equa-
tions, Dynamical Systems, and an Introduction to Chaos. Aca-
demic Press 2004; 2013

[91] M.W. Hirsch, C.C. Pugh and M. Shub, Invariant Manifolds. Lec-
ture Notes in Mathematics 583 1977

[92] Chr. Huygens, Horologium Oscillatorium. Œvres Complètes de
Christiaan Huygens publiées par la Société Hollandaise des
Sciences 16, Martinus Nijhoff, The Hague 1929 Vol. 5 241-262;
Vol. 17 156-189

[93] J. Israel, The Dutch Republic: Its Rise, Greatness, and Fall, 1477-
1806. Oxford University Press 1995

[94] H. Kamerlingh Onnes, Nieuwe Bewijzen voor de Aswenteling
der Aarde. Proefschrift Universiteit Groningen 1879

[95] D.E. Kirk, Optimal Control Theory: an Introduction. Dover
2004

246



Bibliography

[96] A. Knauf, Mathematical Physics: Classical Mechanics. Unitext
109 Springer 2018

[97] P.S. de Laplace, Traité de Mécanique Céleste, Œuvres Complètes.
Tome 4 (1799), 1-501

[98] Y. Last, Spectral Theory of Sturm-Liouville Operators on Infi-
nite Intervals: A Review of Recent Developments. In: W.O. Am-
rein,A.M. Hinz, D.P. Pearson (eds) Sturm-Liouville Theory.
Birkhäuser 2005

[99] G.W. Leibniz, Nova methodus pro maximis et minimis. Acta
Eruditorum 1684; In: D.J. Struik, A Source Book in Mathematics
1200-1800. Harvard University Press 1969 271-281

[100] M. Levi, F.C. Hoppensteadt and W.L. Miranker, Dynamics
of the Josephson junction. Quarterly of Applied Mathematics
36(2) (1978) 167-198, Brown University

[101] R. de la Llave, A tutorial on KAM Theory. In A. Katok et
al. (Eds.), Proceedings of Symposia in Pure Mathematics 69
Amer. Math. Soc. (2001) 175-292

[102] H. Levine, and J. Schwinger. On the radiation of sound from
an unflanged circular pipe. Phys. Rev. 73 (1948) 383–406

[103] J.A. van Maanen, Een Complexe Grootheid, leven en werk van
Johann Bernoulli, 1667–1748. Epsilon Uitgaven 34 1995

[104] B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman
1977

[105] R. Mañé, Ergodic Theory and Differentiable Dynamics. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete 3. Folge Band 8
Springer 1987

247



Bibliography

[106] J. Martin, The Helen of Geometry. The College Mathematical
Journal 41 (2010) 17-28

[107] R.M. May, Simple mathematical models with very compli-
cated dynamics. Nature 261 (1976) 459-466

[108] R.M. May, Biological populations obeying difference equa-
tions: Stable points, stable cycles, and chaos. J. Theor. Biol. 51
(1975) 511-524

[109] H.C. Mayer and R. Krechetnikov, Walking with coffee: Why
does it spill? Phys. Rev. E 85 (2012) 046117

[110] J. Meixner and F.W. Schäfke, Mathieusche Funktionen und
Sphäroidfunktionen. Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, Band LXX1, Springer
1954

[111] M.G.J. Minnaert, De Natuurkunde van ’t Vrije Veld delen 1,
2 en 3, Vijfde Editie, ThiemeMeulenhoff 1996; The Nature of
Light and Colour in the Open Air, Dover 1954 (first edition
1937-40)

[112] J. Moser and J. Pöschel, An extension of a result by Dinaburg
and Sinai on quasi-periodic potentials. Comment. Math. Hel-
vetici 59 (1984) 39-85

[113] M. Misquero and R. Ortega, Some Rigorous Results on the
1 : 1 Resonance of the Spin-Orbit Problem. SIAM J. Appl. Dyn.
Syst. 19(4) (2020) 2233-2267

[114] A. Neishtadt, Averaging, passage through resonances, and
capture into resonance in two-frequency systems. Russ. Math.
Surv. 69(5) (2014) 771

248



Bibliography

[115] A. Neishtadt and A. Okunev, Averaging and passage through
resonances in two-frequency systems near separatrices. ArXiv
preprint arXiv:2108.08540v2

[116] S.E. Newhouse, Diffeomorphisms with infinitely many sinks.
Topology 13 (1974) 9-18

[117] S.E. Newhouse, The abundance of wild hyperbolic
sets and nonsmooth stable sets for diffeomorphisms.
Publ. Math. I.H.E.S. 50 (1979) 101-151

[118] I. Newton, Philosophiæ Naturalis Principia Mathematica.
Translated by I. Bernard Cohen and Anne Whitman as Isaac
Newton, The Principia – Mathematical Principles of Natural
Philosophy. University of California Press 1999 (first edition
1687)

[119] Z. Nitecki, Differentiable Dynamics, An introduction to the
Orbit Structure of Diffeomorphisms. The M.I.T. PRESS, Cam-
bridge Massachusetts, and London, England 1971

[120] E. Noether, Invariante Variationsprobleme. Nachrichten der
Königlichen Gesellschaft der Wissenschaften zu Göttingen,
Math-phys. Klasse (1918) 235-257

[121] Press release: Nobel Prize in Physics 1985.
https://www.nobelprize.org/prizes/physics/1985/
press-release/ Accessed on Fri. 10 Jun 2022.

[122] P.J. Olver, Introduction to Partial Differential Equations.
Springer 2014

[123] J. Oxtoby, Measure and Category. Springer 1971

[124] J. Palis and F. Takens, Hyperbolicity & sensitive chaotic dy-

249

https://www.nobelprize.org/prizes/physics/1985/press-release/
https://www.nobelprize.org/prizes/physics/1985/press-release/


Bibliography

namics and homoclinic bifurcations. Cambridge studies in ad-
vanced mathematics 35 1993

[125] Y.B. Pesin, (1977). Characteristic Lyapunov Exponents and
Smooth Ergodic Theory. Russian Math. Surveys. 32(4) (1977)
55-114.

[126] J.P. Philips, Brachistochrone, Tautochrone, Cycloid – Apple of
Discord. The Mathematics Teacher 60(5) (1967) 506-508

[127] J. Pöschel, KAM à la R. Regular Chaotic Dynamics 16 (2011)
17-23

[128] A. Pogromsky, D. Rijlaarsdam and H. Nijmeijer, Experimental
Huygens synchronization of oscillators. In: M. Thiel, J. Kurths,
M.C. Romano, A. Moura and G. Károlyi, Nonlinear Dynamics
and Chaos: Advances and Perspectives. Springer Complexity
(2010) 195-210

[129] T. Poston and I. Stewart, Catastrophe Theory and its Applica-
tions. Pitman 1978

[130] Alice C. Quillen, Reducing the probability of capture into res-
onance, Monthly Notices of the Royal Astronomical Society 365,
4 (2006) 1367-1382

[131] A. Robinson, Nonstandard Analysis. Princeton Landmarks in
Mathematics 1966

[132] David E. Rowe, Emmy Noether - Mathematician Extraordi-
naire. Springer, 2021.

[133] David E. Rowe and Mechthild Koreuber, Proving It Her Way.
Emmy Noether, a Life in Mathematics. Springer, 2020.

250



Bibliography

[134] D. Ruelle and F. Takens, On the nature of turbulence. Com-
mun. Math. Phys. 20 (1971) 167-192; 23 (1971) 343-344

[135] L. Russo and S. Levy. The Forgotten Revolution: How Science
Was Born in 300 BC and Why it Had to Be Reborn. Springer-
Verlag, Berlin, Heidelberg 2004

[136] E.O. Schulz-DuBois, Foucault Pendulum Experiment by
Kamerlingh Onnes and Degenerate Perturbation Theory.
American Journal of Physics 38, 173 (1970)

[137] H. Seifert and W. Threlfal, Variationsrechnung im Grossen.
Chelsea Publishing Company 1938

[138] G.F. Simmons, Differential Equations with Applications and
Historical Notes Third Edition. CRC Press 2017

[139] B. Simon, Almost Periodic Schrödinger operators: a review.
Adv. in Applied Mathematics 3 (1982) 463-490

[140] B. Simon, Schrödinger operators in the twenty-first century.
In: Mathematical Physics 2000 (A. Fokas, A. Grigoryan, T. Kib-
ble, and B. Zegarlinski, eds.), Imp. Coll. Press, London, 2000,
283-288

[141] W. de Sitter, Outlines of a new mathematical theory of
Jupiter’s satellites Ann. Sterrewacht Leiden 12 (1925) 1-55

[142] W. de Sitter. Jupiter’s Galilean satellites (George Darwin lec-
ture). Monthly Notices of the Royal Astronomical Society 91
(1931) 706-738

[143] D.G. Shafer, The brachistochrone: historical gateway to the
calculus of variations. MATerials MATemàtics 5(14) 2007

251



Bibliography

[144] D. Sobel, Longitude. Walker 1995; 2005

[145] M. Spivak, Calculus on Manifolds. Benjamin 1965

[146] I.H. Stamhuis, Christiaan Huygens correspondeert met zijn
broer over levensduur. Hoe wetenschappelijke begrippen kun-
nen ontstaan. In: De Zeventiende Eeuw. 12 (1996) 161-170

[147] Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Ap-
plications to Physics, Biology, Chemistry, and Engineering, 2n
ed. Westview Press, 2015

[148] H.J. Sussmann and J.C. Willems, 300 years of optimal con-
trol from the brachystochrone to the maximum principle. IEEE
Control Systems (1997) 32-44

[149] F. Takens, A C 1 counterexample to Moser’s twist theorem.
Indag Math 74 (1971) 379-386

[150] F. Takens, Forced oscillations and bifurcations. In: Applica-
tions of Global Analysis I, Comm. of the Math. Inst. Rijksuniver-
siteit Utrecht 1974; In H.W. Broer, B. Krauskopf and G. Vegter
(eds.), Global Analysis of Dynamical Systems. IOP (2001) 1-62

[151] F. Takens, Reconstruction Theory and Nonlinear Time Series
Analysis. In H.W. Broer, B. Hasselblatt and F. Takens (Eds.),
Handbook of Dynamical Systems 3 North-Holland Ch. 7, 2010

[152] Toonder Studio’s, Kappie en de Meester en De Kraak 1951

[153] N. Thistlethwaite and G. Webber, Eds. The Cambridge Com-
panion to the Organ. Cambridge University Press 2003

[154] R. Vermeij, Christiaan Huygens. De mathematisering van de
werkelijkheid. Veen 2007

252



Bibliography

[155] M. Viana and K. Oliveira, Foundations of Ergodic Theory.
Cambridge University Press 2016

[156] B.L. van der Waerden, Erwachende Wissenschaft. Ägyptis-
che, Babylonische und Griechische Mathematik. Zweite Au-
flage. Birkhäuser 1966

[157] R. Westfall, Never at rest: a biography of Isaac Newton. Cam-
bridge University Press 1983

[158] S.M. Wieczorek, B. Krauskopf, T.B. Simpson and D. Lenstra,
The dynamical complexity of optically injected semiconductor
lasers. Physics Reports 416(1-2) (2005) 1-128

[159] E.A. Whitman, Some historical notes on the cycloid. The
American Mathematical Monthly 50(5) (1943) 309-315

[160] D.R. Yennie, Integral quantum Hall effect for nonspecial-
ists. Rev. Mod. Phys. 59(3) 781-824 (DOI:) 10.1103/RevMod-
Phys.59.781

[161] J.C. Yoccoz, Conjugaison différentiable des difféomor-
phismes du cercle dont le nombre de rotation vérifie une
condition diophantienne. Ann. Sci. École Norm. Sup. (4) 17
(1984) 333-359

[162] J.C. Yoccoz, Travaux de Herman sur les tores invariants. Sémi-
naire Bourbaki 34 (1991-1992) 311-344

[163] J.C. Yoccoz, Théorème de Siegel, nombres de Bruno et
polynômes quadratiques. Petits diviseurs en dimension 1.
Astérisque 231 (1995) 3-88

[164] J.G. Yoder, Unrolling Time. Christiaan Huygens and the Math-
ematizaion of Nature. Cambridge University Press 1988

253



Bibliography

[165] E.C. Zeeman, Catastrophe Theory: Selected Papers 1972-1977.
Addison-Wesley 1977

254


	It oscillates forever
	The pendulum, the spring and some other examples
	The pendulum
	The spring
	The U-pipe
	The L-C circuit
	On modeling

	The pendulum as a spring: linearization
	The phase plane and the line element field
	The phase plane
	Line element fields

	Energy
	Kinetic and potential energy
	Conservation of energy
	Energy conservation and the phase portrait

	Period of oscillation
	A general expression for the period of oscillation
	Spring and pendulum

	Exercises
	The vertical spring
	The horizontal pendulum
	Symmetries of the line elements field
	Ellipses and time rescalings on the spring
	Amplitudes and energies
	Phase portraits
	The cycloid
	Huygens' isochronous and tautochronous curve
	Period and area
	Elliptic integrals
	The potential energy of the pendulum


	It oscillates in resonance
	Friction
	A friction directly proportional to the velocity
	The R-L-C circuit

	Loss of energy due to friction
	When the undamped motion oscillates
	The general case

	The damped harmonic oscillator with periodic forcing, resonance
	``The'' solution in the harmonic case
	Resonance in harmonic oscillators with periodic forcing

	Resonance in non-harmonic oscillators with periodic forcing
	Parametric resonance
	Non-linear modeling

	The stabilization of oscillations
	First attempt
	Second attempt
	Third attempt

	Exercises
	Negative damping
	Tossing a fair coin
	A ``controlled'' oscillator
	A damped oscillator with forcing
	The Van der Pol–Liénard differential equation


	Oscillations in daily life
	Two further examples of oscillators
	A plank bridge
	Rolling of a ship

	Coupling finitely many oscillations
	Lissajous figures
	Beats
	More than two degrees of freedom

	Vibrations of continuous media
	Discretizing the continuum
	Strings, beams, etc.
	Other vibrational phenomena

	Relaxation oscillations
	An exercise on Hooke's n–body problem

	Johann Bernoulli's brachistochrone
	Geometric optics
	Fermat implies Snell
	A conservation law

	The brachistochrone as a light ray
	Scholium

	Small oscillations and the Foucault problem
	Beats revisited
	The Foucault pendulum
	The spherical pendulum
	Small oscillations
	Spherical precession

	Scholium
	One more Hookian problem

	Chaos in periodically forced oscillators
	The Hénon attractor
	Iterating a map
	The Benedicks-Carleson Ansatz

	The stroboscopic map
	Determinism again
	The stroboscopic phase portrait
	Hénon-like strange attractors

	Scholium
	Towards an understanding of chaos
	Chaotic dynamics without damping


	More on resonance
	Huygens' clocks
	Arnold resonance tongues and fractal geometry
	A theoretical digression into circle maps
	Denjoy Theory
	Kolmogorov-Arnold-Moser (KAM)
	The Arnold family of circle maps
	A second digression on topology and measure theory
	Back to Huygens' clocks

	Parametric resonance: Mathieu's equation and the like
	Scholium
	Quasiperiodic Mathieu versus Schrödinger
	Celestial resonance
	A final exercise on Kepler's third law


	Solutions of selected exercises
	Exercises from Section 1.6
	Exercise 1.6.1: The vertical spring
	Exercise 1.6.2: The horizontal pendulum
	Exercise 1.6.3: Symmetries of the line element field
	Exercise 1.6.4: Ellipses and time rescalings on the spring
	Exercise 1.6.5: Energies and amplitudes
	Exercise 1.6.6: Phase portraits
	Exercise 1.6.7: The cycloid
	Exercise 1.6.8: Huygens' isochronous and tautochronous curve
	Exercise 1.6.9: Period and area
	Exercise 1.6.10: Elliptic integrals
	Exercise 1.6.11: The potential energy of the pendulum

	Exercises from Section 2.6
	Exercise 2.6.1: Negative damping
	Exercise 2.6.2: Tossing a fair coin
	Exercise 2.6.3: A ``controlled'' oscillator
	Exercise 2.6.4: A damped oscillator with forcing
	Exercise 2.6.5: The Van der Pol-Liénard differential equation

	Exercise from Chapter 3: On Hooke's n–body problem
	Exercise from Appendix B: One more Hookian problem
	Exercise from Appendix D: On Kepler's third law


