
Quantum Dynamics & Topological Phases

electronic and photonic semiconductors

Giuseppe De Nittis
(Pontificia Universidad Católica de Chile)

April 6, 2022

Collaborators:

G. Landi
M. Lein
K. Gomi
H. Schulz-Baldes



Outline

1 Quantum Hall effect, Hofstadter’s butterfly, TKNN duality
Phenomenology of the QHE
Bloch-bundle: physical meaning and topology
From the Kubo’s formula to Chern numbers
Adiabatic reduction and butterflies
The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles
Periodic table of topological phases
Spectral flow and Index theory
Classification principle in 2D

3 Maxwell dynamics and the topological phases of the light
Photonic crystals
Photonic topological insulators
A lot of work to do ...



1879 - E. H. Hall inferred from the Maxwell’s equations the
existence of transverse currents (classical Hall effect).

1980 - K. von Klitzing observed the quantization of the
transverse conductance at T ∼ 0 Ko (quantum Hall effect).

1981 - First theoretical explanation by R. B. Laughlin (flux
tube argument). Topological Quantum Numbers (TQN)
appear on the scene.

Nowadays quantum Hall systems provide the prototypical
(hence simplest) example of Topological Insulator (TI).



Experimental setting for the QHE
Gas of 2-dimensional independent-magnetic-Bloch-electrons,
Z2 crystal lattice, B uniform orthogonal magnetic field.

Dimensionless parameter: hB := Φ0
B , Φ0 := hc

e (magnetic flux quantum).

Hofstadter regime: hB�1 (B → 0, usual experimental setting).

Harper regime: hB�1 (B →∞, optical lattices).



Quantization of the resistivity (GaAs-GaAlAs heterojunction)

Hall resistance and conductance: ρH := σH
−1 = 1

n RH .
von Klitzing constant RH := h

e2 . n = 1, 2, 3, 4, 6, 8, . . .
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The pioneering and seminal work (TKNN-paper)

paved, for the first time, the way to explain the QHE by TQN:

gapped electronic systems ⇔ topology of vector bundles

• The paper is a collection of very interesting ideas.

• The ideas are developed without mathematical rigor.

• The results are generalizable to a wide range of situations.



From Symmetries to Bloch-bundle ...

H = separable Hilbert space,
U : ZN → U (H) = unit. rep. (wandering syst. + algebraically. comp.),
H ∈ L (H), H = H† (not necessarily bounded),

DEFINITION

H has a ZN -symmetry iff [f (H); U(n)] = 0, ∀ n ∈ ZN , ∀ f ∈ L∞(R).

THEOREM (G. D. & G. Panati: Spectral Days, Santiago, 2012)
Assume that H has a ZN -symmetry, then:

(i) a Bloch-Floquet (type) unitary decomposition exists:

H −→
∫ ⊕
TN

dk Hk , f (H) −→
∫ ⊕
TN

dk f (H)k ;

(ii) if P ∈ C
(
σ(H)

)
such that P(H) = P(H)2 (gap condition) then:

π : E (P) −→ T
N , E (P) =

⋃
k∈TN

[P(H)k Hk ]

is a Hermitian vector (Hilbert) bundle which is uniquely determined.



... more in general: Band spectrum

H(k) ψj(k) = Ej(k) ψj(k) , k ∈ B

� Usually an energy gap separates the filled valence bands from the
empty conduction bands. The Fermi level EF characterizes the gap.



Gap condition and Fermi projection

- An isolated family of energy bands is any (finite) collection
{Ej1(·), . . . ,Ejm(·)} of energy bands such that

min
k∈B

dist

 m⋃
s=1

{Ejs (k)} ,
⋃

j∈I\{j1,...,jm}

{Ej (k)}

 = Cg > 0 .

This is usually called “gap condition”.

- An isolated family is described by the “Fermi projection”

PF (k) :=
m∑

s=1

|ψjs(k)〉〈ψjs(k)| .

This is a continuous projection-valued map

B 3 k 7−→ PF (k) ∈ K(H) .



The Serre-Swan construction
� For each k ∈ B

Hk := Ran PF (k) ⊂ H
is a subspace of H of fixed dimension m.

� The collection
EF :=

⊔
k∈B

Hk

is a topological space (said total space) and the map

π : EF −→ B

defined by π(k , v) = k is continuous (and open).

This is a complex vector bundle (of rank m) called “Bloch-bundle”.



Definition (Topological phases)
Let B 3 k 7−→ H(k) be a TQS with an isolated family of m energy bands and
associated Bloch bundle EF −→ B. The topological phase of the system is
specified by

[EF ] ∈ Vecm
C(B) .

- M ∩ Φ Dictionary -
“Ordinary” quantum system:

TQS in a trivial phase
m

Trivial vector bundle, 0 ≡ [B×Cm]
m

Exists a global frame of continuous Bloch functions

Allowed (adiabatic) deformations:

Transformations which doesn’t alter the nature of the system
m

Vector bundle isomorphism
m

Stability of the topological phase



Classification of topological phases

Theorem (Peterson, 1959)

If dim(B) 6 4 then

Vec1
C(B) ' H2(B,Z)

Vecm
C(B) ' H2(B,Z) ⊕ H4(B,Z) (m > 2)

and the isomorphism

Vecm
C(B) 3 [E ] 7−→ (c1, c2) ∈ H2(B,Z) ⊕ H4(B,Z)

is given by the first two Chern classes (notice c2 = 0 if m = 1).

� B a connected orientable closed manifold of dimension 2 (e.g. T2, S2, ...).
Then H2(B,Z) = Z and the integro-differential expression holds

c1(EF ) ≡
i

2π

∫
B

Tr
(

PF (k)
[
∂k1PF (k), ∂k2PF (k)

])
dk
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Linear response theory [Bellissard, Schulz-Baldes, Rebolledo, ... ]

H = H∗ self-adjoint element of a C∗-algebra A.

Liouvillian evolution d
dt A = LH(A), with LH(A) := i [A,H], A ∈ A.

ρ = ρ(t = 0) is given by fβ,µ(H) ∈ A (Fermi-Dirac distribution).

A has a gradient ∇ = (∇1, . . . ,∇d ), e.g. ∇j (A) = − i [Xj ,A].

A has an integral T , e.g. trace per unit volume (thermodynamic limit).

Definition
The averaged current of an observable O on the initial state ρ
drifted by the perturbation P is given by

JO,P(λ) := lim
δ→0+

∫ +∞

0
e−δt T

(
ρP(t) O

)
, λ� 1

where ρP(t) := etLH+λ P(ρ) is the full perturbed evolution.

JO,P(λ) = λ σO,P(β, µ) + O(λ2)

defines the Kubo coefficient.



Kubo-Chern duality

Let A be the C∗-algebra of periodic or random operators in dim = 2.

O = ∇1(H) := − i [X1,H] and P = X2.

fβ,µ the Fermi-Dirac distribution with µ in a gap (periodic case) or in a
localization region (random case) of H.

In the limit of zero temperature β = +∞ the Kubo coefficient is

σ1,2(+∞, µ) =
i

2π
T
(

PF [∇1(PF ),∇2(PF )]
)

PF = limβ→+∞ fβ,µ(H) is the Fermi projection at energy EF = µ.

Theorem (Kubo-Chern duality)

σ1,2(+∞, µ = EF ) = c1(EF )
↙ ↘

functional analysis geometry & topology
operator algebras of vector bundles
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Bloch-Landau Hamiltonian

Densely defined on L2(R2) by

HBL :=
}2

2m

[(
−i

∂

∂x
− π

hB
y
)2

+

(
−i

∂

∂y
+

π

hB
x
)2
]
+ Vper(x , y)

where Vper is a Z2-periodic (crystal) potential, hB ∝ 1
B .

Theorem (D. 2010)
There are semiclassical adiabatic reductions

HHof := ℘(U0,V0)OO

isospectrality

��

on L2(T2)

HBL

B→∞ ''

B→0
77

HHar := ℘(U∞,V∞) on L2(R)

which are (asymptotic) unitary equivalence.



Simplest (formal) model (universal Hofstadter operator)

℘(u, v) = u+u−1+v+v−1 =: h , ∈ C∗
(
u, v | uv = e i θvu

)
.

σ(HB1
Hof) = σ(h) = σ(HB2

Har) θ = B1 = B2
−1



Color-coded quantum butterflies (courtesy of J. Avron)



Beyond isospectrality ... topology can distinguish the models

Color = Hall conductance = Chern number.

θ = M/N, M = 1, N = 4, j = 3, P3 = p1 ⊕ (p2 ⊕ p3)

4 CHar(P3)︸ ︷︷ ︸
= 1

+ 1 CHof(P3)︸ ︷︷ ︸
= −1

= 3 (diophantine TKNN-equation)
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Theorem (D. 2010)

Let θ = M
N and p a gap-projection of h. Let E 0

p (resp. E∞p ) be the
Bloch-bundle associated with p in the Hofstadter (resp. Harper)
limit and CHof(p) := c1(E

0
p ) (resp. CHar(p) := c1(E

∞
p )) the

related Chern number. Then

N CHar(p) + M CHof(p) = T (p) .

If Pk := p1 ⊕ . . .⊕ pk is the total projection up to the k-th gap

N CHar(Pk ) + M CHof(Pk ) = k (TKNN-equation) .

� The proof is a consequence of the more fundamental geometric duality

α∗
(
E∞p

)
' β∗

(
E 0
p

)
⊗ det

(
E∞1

)
α, β ∈ C(T2)

� Improved in [G. D., G. Landi. Adv. Theor. Math. Phys. 16 (2012)] .
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Fundamental Symmetries

Let H be a Hamiltonian (self-adjoint operator) on a complex Hilbert space
endowed with a (anti-linear) complex conjugation C.

Time Reversal Symmetry (TR)
H has a TR-sym. if there exists a unitary operator T such that:

C H C = + T H T ∗ ,

{
even if CTC = +T ∗ i.e. (CT )2 = +1

odd if CTC = −T ∗ i.e. (CT )2 = −1 .

Particle-Hole Symmetry (PH)
H has a PH-sym. if there exists a unitary operator I such that:

C H C = − I H I∗ ,

{
even if CIC = +I∗ i.e. (CI)2 = +1

odd if CIC = −I∗ i.e. (CI)2 = −1 .

Chiral Symmetry (X)
H has a X-sym. if there exists a unitary operator X such that:

H = − X H X
∗ , X

2 = ±1 (e.g. X
′ = iX) .



Cartan-Altland-Zirnbauer (CAZ) classification

CAZ TR PH X d = 1 d = 2 d = 3 d = 4 Physics

A 0 0 0 0 Z 0 Z QHE

AI + 0 0 0 0 0 2Z TR-invariant

AII − 0 0 0 Z2 Z2 Z systems

AIII 0 0 1 Z 0 Z 0 chiral

BDI + (+) 1 Z 0 0 0 systems

CII − (−) 1 2Z 0 Z2 Z2

D 0 + 0 Z2 Z 0 0 BdG

C 0 − 0 0 2Z 0 Z2 systems

DIII − + (1) Z2 Z2 Z 0 (supercond.)

CI + − (1) 0 0 2Z 0

� Remark: Classification for free fermions not for Bloch electrons !!



Open questions:

(1) Structural analysis of the geometry underlying different classes;

(2) Definition of the topological objects which provide the classification;

(3) Association between topological invariants and physical observables;

(4) Bulk-edge correspondence in each of the 10 classes;

(5) Extension to the random case (stability).

Possible approaches ... and some result:

(1) and (2) done for classes AI and AII by looking at cohomology:
[G. D., K. Gomi. J. Geom. Phys. 86, (2014)]
[G. D., K. Gomi. Submitted to Comm. Math. Phys., (2014)]

A different approach to (2) and (4) is based on index theory:
[G. D., H. Schulz-Baldes. Canad. Math. Bull., (2014)]
[G. D., H. Schulz-Baldes. Ann. H. Poincaré, (2014)]

(3) some results for BdG classes: spin and thermal QHE:
[G. D., H. Schulz-Baldes. In preparation]

(5) stability for BdG classes (localization á la Aizenman-Molchanov):
[G. D., M. Drabkin, H. Schulz-Baldes. Pastur fest 75th birthday]
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Classification via the Noether-Fredholm index

Harper-like Hamiltonian with random perturbation on `2(Z2)

Hω = ℘
(

SB
1 ,S

B
2

)
+ λ Vω

where ℘ is a polynomial, SB
j := e(−1)j BXj+1 Sj are the magnetic translations,

λ ∈ R, ω ∈ Ω randomness.

Theorem (Connes, Bellissard, Kunz, Avron, Seiler, Simon ...)

Let PF := χ(−∞,EF ](H) be the Fermi projection with EF in a gap
or in a regime of Anderson localization. Then

PF U PF is Fredholm , U :=
X1 + i X2

|X1 + i X2|

and, defined Ind(A) = dim ker(A)− dim ker(A∗), one has

Ind (PF U PF ) =
1

i 2π
T
(

PF [[X1,PF ], [X2,PF ]]
)
= c1(EF ) .



Laughlin argument (1981) as a Spectral Flow
- Let us insert a magnetic flux tube α ∈ [0, 1] through the unit cell [0, 1]2 ⊂ Z2.

- The magnetic translations change as SB
j 7→ Sα,Bj := e iα fj (X1,X2)SB

j .

- Hα − Hα=0 is compact (only discrete spectrum moves).

Theorem (G. D., H. Schulz-Baldes. Ann. H. Poincaré, (2014))

Spectral Flow
(
[0,1] 3 α 7→ Hα through µ = EF

)
= c1(EF ) .
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Odd symmetric Fredholm operators and Z2-index
- Let H be a separable Hilbert space with complex conjugation C.

- T is a unitary anti-involution T ∗ = T−1 = −T and real CTC = T .

- A is odd-symmetric⇔ T A T ∗ = A∗ where A := C A C.

Theorem (G. D., H. Schulz-Baldes. Canad. Math. Bull., (2014))

(i) The space Fos(H) := {odd− symmetric Fredholm operators}
has two connected components classified by the Z2-index

IndZ2(A) := (−1)dim Ker(A) .

(ii) If H is a self-adjoint Hamiltonian with odd TRS and
PF := χ(−∞,EF ](H) with EF in a gap or in a regime of
Anderson localization, then PF U PF ∈ Fos(H) and

IndZ2 (PF U PF ) = Spectral Flow
(
[0,1/2] 3 α 7→ Hα

)
/mod.2





Theorem (G. D., H. Schulz-Baldes. Ann. H. Poincaré, (2014))

- Classification principle in 2D -

All the topological CAZ phases for 2D tight-binding systems can
be describe by the unique Fredholm operator PF U PF .

- For classes AI, AIII, BDI, CI and CII only trivial phase.

- For classes A and D one has a Z-classification given by

c1(EF ) = Ind (PF U PF ) .

- For class C the symmetry implies that Ind (PF U PF ) ∈ 2Z.

- For classes AII and DIII the symmetry implies the vanishing of the primary
invariant Ind (PF U PF ) = 0. The secondary invariant IndZ2 (PF U PF ) is well
defined and provides the Z2-classification.

Open questions:

(1) Extension to higher dimensions;

(2) Extension to the continuous case;

(3) Description of the weak invariants.
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Quantum-light analogy

Maxwell’s equations

ε ∂t E = +∇× H µ ∂t H = −∇× E (dynamic)

∇ · ε E = 0 ∇ · µ H = 0 (no sources)

Conditions on the material weights

W :=

(
ε−1 χ

χ∗ µ−1

)
⇒


(1) 0 < c11 6 W−1,W 6 c21

(2) W = W ∗ (lossless)

(3) W is frequency-independent

Schrödinger-type light-dynamics

i ∂t

(
E
H

)
︸ ︷︷ ︸

Ψ∈L2(R3,C6)

= M
(

E
H

)
, M :=

(
ε−1 χ

χ∗ µ−1

)
︸ ︷︷ ︸

W

(
0 + i ∇×

− i ∇× 0

)
︸ ︷︷ ︸

Rot

‖Ψ‖2
W := 〈Ψ,W−1 Ψ〉L2(R3,C6) = 2 E (E ,H), energy density of the e.m. field.



“A photonic crystal is to light what a crystalline solid is to an electron”

ε, µ and χ are Z3-periodic (usually χ = 0) ⇒ photonic band gap
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Symmetries of the Maxwell operator

In the vacuum (W = 1)

Mvac = Rot = σ2 ⊗ ∇×

hence Tj := σj ⊗ 1 and Jj := C Tj (j = 1, 2, 3) are symmetries.

In a PhC (W 6= 1) the symmetries depends on the weights ε, µ, χ.

Theorem (G. D., M. Lein. Ann. Phys. 350, (2014))
- Exhaustive CAZ classification for PhC’s -

9 of 10 of the CAZ classes can be theoretically realized with PhC’s. 6 have
already been realized in experiments.



Photonic protected phases

Photonic phases protected by back-scattering have been recently observed:

[Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Nature 461, (2009)]



Photonic protected phases

Photonic phases protected by back-scattering have been recently observed:

[M. C. Rechtsman et al.. Nature 496, (2013)]

Open questions:

(1) A complete first-principles theory able to explain topological phases;

(2) Topological phases an physical observables (Kubo-Chern formula, ...);

(3) Stability under disorder (random operators and n.c.-geometry).
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First results: semiclassical behavior

Ingredients for a space-adiabatic reduction:
(1) A distinction between fast and slow degrees of freedom;

(2) A dimensionless adiabatic parameter e λ� 1 which quantifies the
separation of scales between the crystal and the external perturbation;

(3) A relevant gapped part of the spectrum Σ for the unperturbed dynamics.

Theorem (G. D., M. Lein. Commun. Math. Phys. 332, (2014))
(i) There is a super-adiabatic projection Πλ associated to Σ such that

[Mλ,Πλ] = O(λ∞) ;

(ii) The full dynamic is adiabatically approximated∥∥∥(e− i tMλ − e− i tOp(Meff)
)

Πλ

∥∥∥ = O
(
(1 + |t |)λ∞

)
(iii) The symbol Meff describes the semiclassical dynamics and

Meff = Meff,0 + λMeff,1︸ ︷︷ ︸
Berry phase + Poynting tensor

+ O(λ2)



Thank you for your attention
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