Quantum Dynamics & Topological Phases electronic and photonic semiconductors

Giuseppe De Nittis

(Pontificia Universidad Católica de Chile)

April 6, 2022

Collaborators:

G. Landi

M. Lein

K. Gomi

H. Schulz-Baldes

FONDECYT

Fondo Nacional de Desarrollo Científico y Tecnológico

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quantum Hall effect, Hofstadter's butterfly, TKNN duality Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

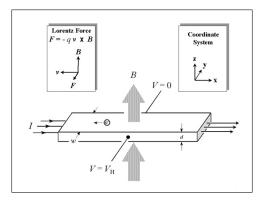
2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

- 1879 E. H. Hall inferred from the Maxwell's equations the existence of *transverse currents* (classical Hall effect).
- 1980 K. von Klitzing observed the quantization of the transverse conductance at $T \sim 0 \text{ K}^{\circ}$ (quantum Hall effect).
- 1981 First theoretical explanation by R. B. Laughlin (flux tube argument). Topological Quantum Numbers (TQN) appear on the scene.
- Nowadays quantum Hall systems provide the prototypical (hence simplest) example of Topological Insulator (TI).

Experimental setting for the QHE

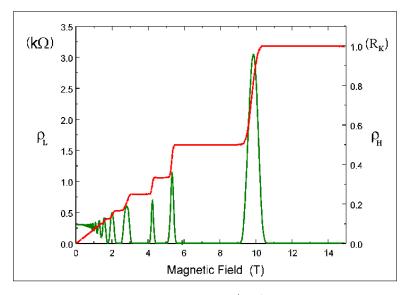
Gas of 2-dimensional independent-magnetic-Bloch-electrons, \mathbb{Z}^2 crystal lattice, *B* uniform orthogonal magnetic field.



Dimensionless parameter: $h_B := \frac{\Phi_0}{B}$, $\Phi_0 := \frac{h_C}{e}$ (magnetic flux quantum). Hofstadter regime: $h_B \gg 1$ ($B \to 0$, usual experimental setting). Harper regime: $h_B \ll 1$ ($B \to \infty$, optical lattices).

うして 山田 マイボット ボット シックション

Quantization of the resistivity (GaAs-GaAlAs heterojunction)



Hall resistance and conductance: $\rho_H := \sigma_H^{-1} = \frac{1}{n} R_H$. von Klitzing constant $R_H := \frac{h}{e^2}$. n = 1, 2, 3, 4, 6, 8, ...

Quantum Hall effect, Hofstadter's butterfly, TKNN duality Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

The pioneering and seminal work (TKNN-paper)

paved, for the first time, the way to explain the QHE by TQN:

gapped electronic systems \Leftrightarrow topology of vector bundles

- The paper is a collection of very interesting ideas.
- The ideas are developed without mathematical rigor.
- The results are generalizable to a wide range of situations.

From Symmetries to Bloch-bundle ...

\mathcal{H} = separable Hilbert space,

 $\begin{array}{l} U: \mathbb{Z}^N \to \mathscr{U}(\mathcal{H}) = \text{unit. rep. (wandering syst. + algebraically. comp.),} \\ H \in \mathscr{L}(\mathcal{H}), \quad H = H^{\dagger} \quad (\textit{not necessarily bounded}), \end{array}$

DEFINITION

H has a \mathbb{Z}^N -symmetry iff [f(H); U(n)] = 0, $\forall n \in \mathbb{Z}^N, \forall f \in L^{\infty}(\mathbb{R})$.

THEOREM (G. D. & G. Panati: Spectral Days, Santiago, 2012)

Assume that H has a \mathbb{Z}^{N} -symmetry, then:

(i) a Bloch-Floquet (type) unitary decomposition exists:

$$\mathcal{H} \longrightarrow \int_{\mathbb{T}^{\mathsf{N}}}^{\oplus} \mathrm{d} k \, \mathcal{H}_k, \qquad f(H) \longrightarrow \int_{\mathbb{T}^{\mathsf{N}}}^{\oplus} \mathrm{d} k \, f(H)_k;$$

(ii) if $P \in C(\sigma(H))$ such that $P(H) = P(H)^2$ (gap condition) then:

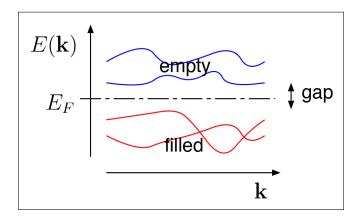
$$\pi: \mathscr{E}(P) \longrightarrow \mathbb{T}^N, \qquad \qquad \mathscr{E}(P) = \bigcup_{k \in \mathbb{T}^N} [P(H)_k \ \mathcal{H}_k]$$

is a Hermitian vector (Hilbert) bundle which is uniquely determined.

... more in general: Band spectrum

Sac

$$H(k) \psi_j(k) = E_j(k) \psi_j(k), \qquad k \in \mathbb{B}$$



Usually an energy gap separates the filled valence bands from the empty conduction bands. The Fermi level E_F characterizes the gap.

Gap condition and Fermi projection

- An isolated family of energy bands is any (finite) collection $\{E_{j_1}(\cdot), \ldots, E_{j_m}(\cdot)\}$ of energy bands such that

$$\min_{k\in\mathbb{B}} \operatorname{dist}\left(\bigcup_{s=1}^{m} \{E_{j_s}(k)\}, \bigcup_{j\in\mathcal{I}\setminus\{j_1,\ldots,j_m\}} \{E_j(k)\}\right) = C_g > 0.$$

This is usually called "gap condition".

- An isolated family is described by the "Fermi projection"

$$P_F(k) := \sum_{s=1}^m |\psi_{j_s}(k)\rangle\langle\psi_{j_s}(k)|.$$

This is a continuous projection-valued map

$$\mathbb{B} \ni k \longmapsto P_F(k) \in \mathcal{K}(\mathcal{H}).$$

The Serre-Swan construction

500

For each $k \in \mathbb{B}$

$$\mathcal{H}_{k} := \operatorname{Ran} P_{F}(k) \subset \mathcal{H}$$

is a subspace of \mathcal{H} of fixed dimension m.

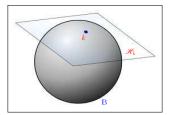
The collection

$$\mathcal{E}_F := \bigsqcup_{k \in \mathbb{B}} \mathcal{H}_k$$

is a topological space (said total space) and the map

 $\pi: \ \mathcal{E}_{\mathit{F}} \ \longrightarrow \ \mathbb{B}$

defined by $\pi(\mathbf{k}, \mathbf{v}) = \mathbf{k}$ is continuous (and open).



This is a complex vector bundle (of rank *m*) called "Bloch-bundle".

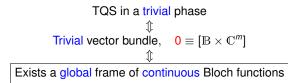
Definition (Topological phases)

Let $\mathbb{B} \ni k \mapsto H(k)$ be a TQS with an isolated family of *m* energy bands and associated Bloch bundle $\mathcal{E}_F \longrightarrow \mathbb{B}$. The topological phase of the system is specified by

 $[\mathcal{E}_{F}] \in \operatorname{Vec}_{\mathbb{C}}^{m}(\mathbb{B})$.

- $M \cap \Phi$ Dictionary -

"Ordinary" quantum system:



Allowed (adiabatic) deformations:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Classification of topological phases

Theorem (Peterson, 1959)

If $\dim(\mathbb{B}) \leqslant 4$ then

 $Vec^{1}_{\mathbb{C}}(\mathbb{B}) \simeq H^{2}(\mathbb{B}, \mathbb{Z})$ $Vec^{m}_{\mathbb{C}}(\mathbb{B}) \simeq H^{2}(\mathbb{B}, \mathbb{Z}) \oplus H^{4}(\mathbb{B}, \mathbb{Z}) \qquad (m \ge 2)$

and the isomorphism

 $\operatorname{Vec}_{\mathbb{C}}^{m}(\mathbb{B}) \ \ni \ [\mathscr{E}] \ \longmapsto (\mathcal{C}_{1}, \mathcal{C}_{2}) \ \in \ H^{2}(\mathbb{B}, \mathbb{Z}) \ \oplus \ H^{4}(\mathbb{B}, \mathbb{Z})$

is given by the first two Chern classes (notice $c_2 = 0$ if m = 1).

^I^I^I^I ^B a connected orientable closed manifold of dimension 2 (*e.g.* \mathbb{T}^2 , \mathbb{S}^2 , ...). Then $H^2(\mathbb{B}, \mathbb{Z}) = \mathbb{Z}$ and the integro-differential expression holds

$$\mathbf{C}_{1}(\mathscr{E}_{F}) \equiv \frac{\mathrm{i}}{2\pi} \int_{\mathbb{B}} \mathrm{Tr}\Big(\mathbf{P}_{F}(\mathbf{k}) \big[\partial_{\mathbf{k}_{1}} \mathbf{P}_{F}(\mathbf{k}), \partial_{\mathbf{k}_{2}} \mathbf{P}_{F}(\mathbf{k}) \big] \Big) \, \mathrm{d}\mathbf{k}$$

1 Quantum Hall effect, Hofstadter's butterfly, TKNN duality

- Phenomenology of the QHE
- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Linear response theory [Bellissard, Schulz-Baldes, Rebolledo, ...]

 $\blacksquare H = H^* \text{ self-adjoint element of a } C^* \text{-algebra } \mathcal{A}.$

- Liouvillian evolution $\frac{d}{dt}A = \mathcal{L}_H(A)$, with $\mathcal{L}_H(A) := i [A, H], A \in A$.
- $\rho = \rho(t = 0)$ is given by $f_{\beta,\mu}(H) \in \mathcal{A}$ (Fermi-Dirac distribution).
- \mathcal{A} has a gradient $\nabla = (\nabla_1, \dots, \nabla_d), \quad e.g. \quad \nabla_j(\mathcal{A}) = -i[X_j, \mathcal{A}].$
- \mathcal{A} has an integral \mathcal{T} , *e.g.* trace per unit volume (thermodynamic limit).

Definition

The averaged current of an observable \mathfrak{O} on the initial state ρ drifted by the perturbation \mathfrak{P} is given by

$$J_{\mathfrak{O},\mathfrak{P}}(\lambda) := \lim_{\delta \to 0^+} \int_0^{+\infty} e^{-\delta t} \, \mathcal{T}\Big(\rho_{\mathfrak{P}}(t) \, \mathfrak{O}\Big) \,, \qquad \lambda \ll 1$$

where $\rho_{\mathfrak{P}}(t) := e^{t\mathcal{L}_{H+\lambda \mathfrak{P}}}(\rho)$ is the full perturbed evolution.

$$J_{\mathfrak{O},\mathfrak{P}}(\lambda) = \lambda \sigma_{\mathfrak{O},\mathfrak{P}}(\beta,\mu) + \mathcal{O}(\lambda^2)$$

defines the Kubo coefficient.

Kubo-Chern duality

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

SQA

• Let \mathcal{A} be the C^* -algebra of periodic or random operators in dim = 2.

$$\mathfrak{O} = \nabla_1(H) := -i[X_1, H] \text{ and } \mathfrak{P} = X_2.$$

• $f_{\beta,\mu}$ the Fermi-Dirac distribution with μ in a gap (periodic case) or in a localization region (random case) of *H*.

In the limit of zero temperature $\beta = +\infty$ the Kubo coefficient is

$$\sigma_{1,2}(+\infty,\mu) = \frac{i}{2\pi} \mathcal{T}\Big(P_F[\nabla_1(P_F),\nabla_2(P_F)]\Big)$$

 $P_F = \lim_{\beta \to +\infty} f_{\beta,\mu}(H)$ is the Fermi projection at energy $E_F = \mu$.

Theorem (Kubo-Chern duality)

$$\sigma_{1,2}(+\infty, \mu = E_F) = c_1(\mathscr{E}_F)$$
functional analysis
operator algebras
of vector bundles

1 Quantum Hall effect, Hofstadter's butterfly, TKNN duality

- Phenomenology of the QHE
- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Bloch-Landau Hamiltonian

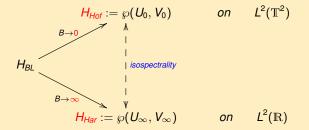
Densely defined on $L^2(\mathbb{R}^2)$ by

$$H_{\mathsf{BL}} := \frac{\hbar^2}{2m} \left[\left(-i \frac{\partial}{\partial x} - \frac{\pi}{h_{\mathsf{B}}} y \right)^2 + \left(-i \frac{\partial}{\partial y} + \frac{\pi}{h_{\mathsf{B}}} x \right)^2 \right] + V_{\text{per}}(x, y)$$

where V_{per} is a \mathbb{Z}^2 -periodic (crystal) potential, $h_B \propto \frac{1}{B}$.

Theorem (D. 2010)

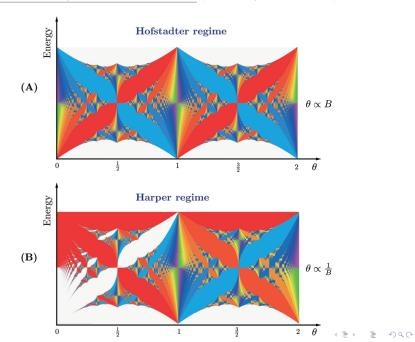
There are semiclassical adiabatic reductions



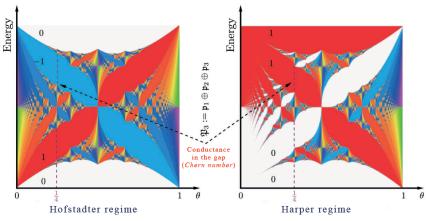
which are (asymptotic) unitary equivalence.

Simplest (formal) model (universal Hofstadter operator) $\wp(\mathfrak{u},\mathfrak{v}) = \mathfrak{u} + \mathfrak{u}^{-1} + \mathfrak{v} + \mathfrak{v}^{-1} =: \mathfrak{h} , \qquad \quad \in \boldsymbol{C}^* \Big(\mathfrak{u},\mathfrak{v} \mid \mathfrak{u}\mathfrak{v} = e^{\mathrm{i}\,\boldsymbol{\theta}}\mathfrak{v}\mathfrak{u} \Big) \; .$ $\sigma(\mathfrak{h})$ 1/3 1/2 2/3 $\sigma(H_{\text{Hof}}^{B_1}) = \sigma(\mathfrak{h}) = \sigma(H_{\text{Hof}}^{B_2})$ $\frac{\theta}{\theta} = B_1 = B_2^{-1}$ 500

Color-coded quantum butterflies (courtesy of J. Avron)



Beyond isospectrality ... topology can distinguish the models



Color = Hall conductance = Chern number.

 $\theta = M/N, M = 1, N = 4, j = 3, \mathfrak{P}_3 = \mathfrak{p}_1 \oplus (\mathfrak{p}_2 \oplus \mathfrak{p}_3)$

$$4 \underbrace{C_{Har}(\mathfrak{P}_3)}_{= 1} + 1 \underbrace{C_{Hof}(\mathfrak{P}_3)}_{= -1} = 3$$
 (diophantine TKNN-equation)

Sac

1 Quantum Hall effect, Hofstadter's butterfly, TKNN duality

- Phenomenology of the QHE
- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies

■ The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Theorem (D. 2010)

Let $\theta = \frac{M}{N}$ and \mathfrak{p} a gap-projection of \mathfrak{h} . Let $\mathscr{E}_{\mathfrak{p}}^{0}$ (resp. $\mathscr{E}_{\mathfrak{p}}^{\infty}$) be the Bloch-bundle associated with \mathfrak{p} in the Hofstadter (resp. Harper) limit and $C_{\text{Hof}}(\mathfrak{p}) := c_1(\mathscr{E}_{\mathfrak{p}}^0)$ (resp. $C_{\text{Har}}(\mathfrak{p}) := c_1(\mathscr{E}_{\mathfrak{p}}^\infty)$) the related Chern number. Then

 $N C_{\text{Har}}(\mathfrak{p}) + M C_{\text{Hof}}(\mathfrak{p}) = \mathcal{T}(\mathfrak{p}).$

$$\begin{split} \textit{If}\,\mathfrak{P}_k &:= \mathfrak{p}_1 \oplus \ldots \oplus \mathfrak{p}_k \textit{ is the total projection up to the }k\textit{-th gap} \\ & \textit{N} \ \textit{C}_{Har}(\mathfrak{P}_k) \ + \ \textit{M} \ \textit{C}_{Hof}(\mathfrak{P}_k) \ = \ \textit{k} \qquad (\textit{TKNN-equation}) \ . \end{split}$$

The proof is a consequence of the more fundamental geometric duality

$$lpha^*\left(\mathscr{E}^\infty_\mathfrak{p}
ight)\ \simeq\ eta^*\left(\mathscr{E}^0_\mathfrak{p}
ight)\ \otimes\ \det\left(\mathscr{E}^\infty_1
ight) \qquad lpha,eta\in C(\mathbb{T}^2)$$

うしん 前 ・ 山田・ 山田・ 山田・

Improved in [G. D., G. Landi. Adv. Theor. Math. Phys. 16 (2012)].

Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Let H be a Hamiltonian (self-adjoint operator) on a complex Hilbert space endowed with a (anti-linear) complex conjugation C.

Time Reversal Symmetry (TR)

H has a TR-sym. if there exists a unitary operator T such that:

$$C H C = + T H T^*, \qquad \begin{cases} \text{even} & \text{if } CTC = +T^* \text{ i.e. } (CT)^2 = +1 \\ \text{odd} & \text{if } CTC = -T^* \text{ i.e. } (CT)^2 = -1 \end{cases}.$$

Particle-Hole Symmetry (PH)

H has a PH-sym. if there exists a unitary operator *I* such that:

 $\begin{array}{l} {\it C} \, {\it H} \, {\it C} \, = \, - \, {\it I} \, {\it H} \, {\it I}^{*} \, \, , \\ {\rm odd} \quad {\rm if} \quad {\it CIC} \, = \, - \, {\it I}^{*} \quad {\it i.e.} \, \, ({\it CI})^{2} \, = \, - \, {\it 1} \, \, . \\ {\rm odd} \quad {\rm if} \quad {\it CIC} \, = \, - \, {\it I}^{*} \quad {\it i.e.} \, \, ({\it CI})^{2} \, = \, - \, {\it 1} \, \, . \end{array}$

Chiral Symmetry (\mathfrak{X})

H has a \mathcal{X} -sym. if there exists a unitary operator \mathcal{X} such that:

 $H = - \mathcal{X} H \mathcal{X}^* , \qquad \mathcal{X}^2 = \pm \mathbb{1} \qquad (e.g. \ \mathcal{X}' = i \mathcal{X}) .$

Cartan-Altland-Zirnbauer (CAZ) classification

CAZ	TR	PH	X	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4	Physics
Α	0	0	0	0	Z	0	Z	QHE
AI	+	0	0	0	0	0	<mark>2</mark> ℤ	TR-invariant
All	-	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	systems
AIII	0	0	1	Z	0	Z	0	chiral
BDI	+	(+)	1	Z	0	0	0	systems
CII	-	(—)	1	<mark>2</mark> ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2	Z	0	0	BdG
С	0	—	0	0	<mark>2</mark> ℤ	0	\mathbb{Z}_2	systems
DIII	_	+	(1)	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	(supercond.)
CI	+	_	(1)	0	0	<mark>2</mark> ℤ	0	

Remark: Classification for free fermions not for Bloch electrons !!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Open questions:

- (1) Structural analysis of the geometry underlying different classes;
- (2) Definition of the topological objects which provide the classification;
- (3) Association between topological invariants and physical observables;
- (4) Bulk-edge correspondence in each of the 10 classes;
- (5) Extension to the random case (stability).

Possible approaches ... and some result:

- (1) and (2) done for classes AI and AII by looking at cohomology:
 [G. D., K. Gomi. J. Geom. Phys. 86, (2014)]
 [G. D., K. Gomi. Submitted to Comm. Math. Phys., (2014)]
- A different approach to (2) and (4) is based on index theory:
 [G. D., H. Schulz-Baldes. Canad. Math. Bull., (2014)]
 [G. D., H. Schulz-Baldes. Ann. H. Poincaré, (2014)]
- (3) some results for BdG classes: spin and thermal QHE:
 [G. D., H. Schulz-Baldes. In preparation]

(5) stability for BdG classes (localization á la Aizenman-Molchanov):
 [G. D., M. Drabkin, H. Schulz-Baldes. Pastur fest 75th birthday]

- Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE
 - Bloch-bundle: physical meaning and topology
 - From the Kubo's formula to Chern numbers
 - Adiabatic reduction and butterflies
 - The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Classification via the Noether-Fredholm index

Harper-like Hamiltonian with random perturbation on $\ell^2(\mathbb{Z}^2)$

$$H_{\omega} = \wp\left(S_1^{B}, S_2^{B}\right) + \lambda V_{\omega}$$

where \wp is a polynomial, $S_j^B := e^{(-1)^j B X_{j+1}} S_j$ are the magnetic translations, $\lambda \in \mathbb{R}, \ \omega \in \Omega$ randomness.

Theorem (Connes, Bellissard, Kunz, Avron, Seiler, Simon ...)

Let $P_F := \chi_{(-\infty, E_F]}(H)$ be the Fermi projection with E_F in a gap or in a regime of Anderson localization. Then

$$P_F \cup P_F$$
 is Fredholm, $U := \frac{X_1 + i X_2}{|X_1 + i X_2|}$

and, defined $Ind(A) = \dim ker(A) - \dim ker(A^*)$, one has

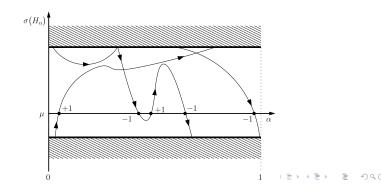
$$\operatorname{Ind}\left(P_{F} \ U \ P_{F}\right) = \frac{1}{\mathrm{i} \, 2\pi} \mathcal{T}\left(P_{F} \left[[X_{1}, P_{F}], [X_{2}, P_{F}]\right]\right) = c_{1}(\mathscr{E}_{F}) \, .$$

Laughlin argument (1981) as a Spectral Flow

- Let us insert a magnetic flux tube $\alpha \in [0, 1]$ through the unit cell $[0, 1]^2 \subset \mathbb{Z}^2$.
- The magnetic translations change as $S_j^B \mapsto S_j^{\alpha,B} := e^{i \alpha} \frac{f_j(X_1, X_2)}{S_j^B} S_j^B$.
- $H_{\alpha} H_{\alpha=0}$ is compact (only discrete spectrum moves).

Theorem (G. D., H. Schulz-Baldes. Ann. H. Poincaré, (2014))

Spectral Flow $([0,1] \ni \alpha \mapsto H_{\alpha} \text{ through } \mu = E_F) = c_1(\mathscr{E}_F).$



Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D
- 3 Maxwell dynamics and the topological phases of the light
 - Photonic crystals
 - Photonic topological insulators
 - A lot of work to do …

Odd symmetric Fredholm operators and \mathbb{Z}_2 -index

- Let \mathcal{H} be a separable Hilbert space with complex conjugation C.
- *T* is a unitary anti-involution $T^* = T^{-1} = -T$ and real CTC = T.
- *A* is odd-symmetric \Leftrightarrow *T* \overline{A} *T*^{*} = *A*^{*} where $\overline{A} := C A C$.

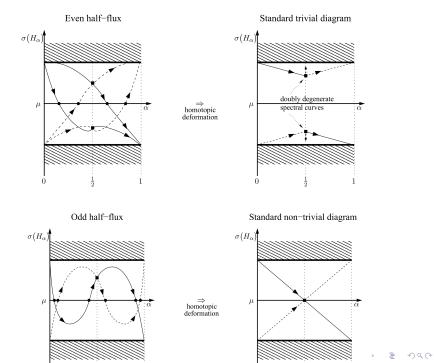
Theorem (G. D., H. Schulz-Baldes. Canad. Math. Bull., (2014))

 (i) The space 𝔽_{os}(𝒫) := {odd – symmetric Fredholm operators} has two connected components classified by the ℤ₂-index

$$\operatorname{Ind}_{\mathbb{Z}_2}(A) := (-1)^{\dim \operatorname{Ker}(A)}$$

(ii) If H is a self-adjoint Hamiltonian with odd TRS and
 P_F := χ_{(-∞,E_F]}(H) with E_F in a gap or in a regime of
 Anderson localization, then P_F U P_F ∈ F_{os}(H) and

 $\operatorname{Ind}_{\mathbb{Z}_2}(P_F \ U \ P_F) = \operatorname{Spectral Flow}([0, 1/2] \ni \alpha \mapsto H_{\alpha})/\operatorname{mod}.2$



Theorem (G. D., H. Schulz-Baldes, Ann. H. Poincaré, (2014))

- Classification principle in 2D -

All the topological CAZ phases for 2D tight-binding systems can be describe by the unique Fredholm operator $P_F U P_F$.

- For classes AI, AIII, BDI, CI and CII only trivial phase.
- For classes A and D one has a $\mathbb Z\text{-classification given by}$

 $c_1(\mathscr{E}_F) = \operatorname{Ind}\left(P_F \ U \ P_F\right) \ .$

- For class C the symmetry implies that Ind $(P_F \ U \ P_F) \in 2\mathbb{Z}$.
- For classes All and DIII the symmetry implies the vanishing of the primary invariant Ind $(P_F \ U \ P_F) = 0$. The secondary invariant $\operatorname{Ind}_{\mathbb{Z}_2}(P_F \ U \ P_F)$ is well defined and provides the \mathbb{Z}_2 -classification.

Open questions:

- (1) Extension to higher dimensions;
- (2) Extension to the continuous case;
- (3) Description of the weak invariants.

- Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE
 - Bloch-bundle: physical meaning and topology
 - From the Kubo's formula to Chern numbers
 - Adiabatic reduction and butterflies
 - The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D

3 Maxwell dynamics and the topological phases of the light

- Photonic crystals
- Photonic topological insulators
- A lot of work to do …

Quantum-light analogy

Maxwell's equations

$\boldsymbol{\epsilon} \partial_t \boldsymbol{E} = + \nabla \times \boldsymbol{H}$	$\boldsymbol{\mu} \partial_t \boldsymbol{H} = -\nabla \times \boldsymbol{E}$	(dynamic)
$\nabla \cdot \boldsymbol{\epsilon} \boldsymbol{E} = \boldsymbol{0}$	$\nabla \cdot \boldsymbol{\mu} \boldsymbol{H} = \boldsymbol{0}$	(no sources)

Conditions on the material weights

$$W := \begin{pmatrix} \epsilon^{-1} & \chi \\ \chi^* & \mu^{-1} \end{pmatrix} \Rightarrow \begin{cases} (1) & 0 < c_1 \mathbb{1} \leq W^{-1}, W \leq c_2 \mathbb{1} \\ (2) & W = W^* & (\text{lossless}) \\ (3) & W \text{ is frequency-independent} \end{cases}$$

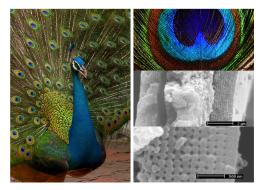
Schrödinger-type light-dynamics

$$\mathbf{i} \ \partial_t \ \underbrace{\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}}_{\mathbf{\Psi} \in L^2(\mathbf{R}^3, \mathbf{C}^6)} = \ \mathbf{M} \ \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}, \qquad \mathbf{M} := \underbrace{\begin{pmatrix} \epsilon^{-1} & \chi \\ \chi^* & \mu^{-1} \end{pmatrix}}_{\mathbf{W}} \underbrace{\begin{pmatrix} \mathbf{0} & +\mathbf{i} \ \nabla^{\times} \\ -\mathbf{i} \ \nabla^{\times} & \mathbf{0} \end{pmatrix}}_{\mathbf{Rot}}$$

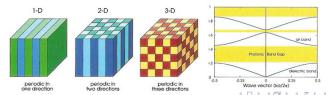
 $\|\Psi\|_{W}^{2} := \langle \Psi, W^{-1} \Psi \rangle_{L^{2}(\mathbb{R}^{3}, \mathbb{C}^{6})} = 2 \mathscr{E}(\boldsymbol{E}, \boldsymbol{H}), \text{ energy density of the e.m. field.}$

"A photonic crystal is to light what a crystalline solid is to an electron"

 ϵ, μ and χ are \mathbb{Z}^3 -periodic (usually $\chi = 0) \Rightarrow$ photonic band gap



b)



Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D

3 Maxwell dynamics and the topological phases of the light

- Photonic crystals
- Photonic topological insulators
- A lot of work to do …

Symmetries of the Maxwell operator

In the vacuum (W = 1)

 $M_{\rm vac} = {\rm Rot} = \sigma_2 \otimes \nabla^{\times}$

hence $T_j := \sigma_j \otimes \mathbb{1}$ and $J_j := C T_j$ (j = 1, 2, 3) are symmetries.

■ In a PhC ($W \neq 1$) the symmetries depends on the weights ϵ, μ, χ .

Theorem (G. D., M. Lein. Ann. Phys. 350, (2014))

- Exhaustive CAZ classification for PhC's -

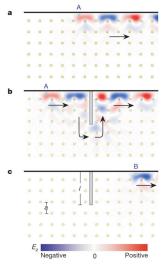
9 of 10 of the CAZ classes can be theoretically realized with PhC's. 6 have already been realized in experiments.

Symmetries present	CAZ class	Reduced K-group in dimension					
		d = 1	d = 2	d = 3	d = 4		
None	А	0	Z	(Z ³)	$\mathbb{Z} \oplus (\mathbb{Z}^6)$		
$J \equiv +TR$	AI	0	0	0	\mathbb{Z}		
$T \equiv \chi$	AIII	\mathbb{Z}	(\mathbb{Z}^2)	$\mathbb{Z} \oplus (\mathbb{Z}^3)$	(\mathbb{Z}^8)		
$C \equiv +PH$	D	\mathbb{Z}_2	$(\mathbb{Z}_2^2) \oplus \mathbb{Z}$	$(\mathbb{Z}_2^3 \oplus \mathbb{Z}^3)$	$(\mathbb{Z}_2^4 \oplus \mathbb{Z}^6)$		
$T \equiv \chi, C \equiv +PH$	BDI	\mathbb{Z}	$(\mathbb{Z}^{\overline{2}})$	$(\mathbb{Z}^{\overline{3}})$	$(\mathbb{Z}^{\overline{4}})$		
$J_2 \equiv -\text{PH}, J_3 \equiv +\text{TR}$	CI	0	0	Z	(\mathbb{Z}^4)		

Photonic protected phases

200

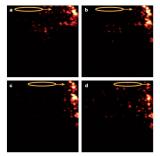
Photonic phases protected by back-scattering have been recently observed:



[Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Nature 461, (2009)]

Photonic protected phases

Photonic phases protected by back-scattering have been recently observed:



[M. C. Rechtsman et al.. Nature 496, (2013)]

Open questions:

- (1) A complete first-principles theory able to explain topological phases;
- (2) Topological phases an physical observables (Kubo-Chern formula, ...);
- (3) Stability under disorder (random operators and n.c.-geometry).

Quantum Hall effect, Hofstadter's butterfly, TKNN duality
 Phenomenology of the QHE

- Bloch-bundle: physical meaning and topology
- From the Kubo's formula to Chern numbers
- Adiabatic reduction and butterflies
- The TKNN-equation as a geometric duality

2 Topological insulators, CAZ classification, twisted bundles

- Periodic table of topological phases
- Spectral flow and Index theory
- Classification principle in 2D

3 Maxwell dynamics and the topological phases of the light

- Photonic crystals
- Photonic topological insulators
- A lot of work to do ...

First results: semiclassical behavior

Ingredients for a space-adiabatic reduction:

- (1) A distinction between fast and slow degrees of freedom;
- (2) A dimensionless adiabatic parameter e $\lambda \ll 1$ which quantifies the separation of scales between the crystal and the external perturbation;
- (3) A relevant gapped part of the spectrum Σ for the unperturbed dynamics.

Theorem (G. D., M. Lein. Commun. Math. Phys. 332, (2014))

(i) There is a super-adiabatic projection Π_{λ} associated to Σ such that

 $[M_{\lambda}, \Pi_{\lambda}] = \mathscr{O}(\lambda^{\infty});$

(ii) The full dynamic is adiabatically approximated

$$\left\| \left(e^{-i t M_{\lambda}} - e^{-i t Op(\mathscr{M}_{eff})} \right) \Pi_{\lambda} \right\| = \mathscr{O}((1+|t|)\lambda^{\infty})$$

(iii) The symbol $\mathscr{M}_{\mathrm{eff}}$ describes the semiclassical dynamics and

$$\mathcal{M}_{\rm eff} = \mathcal{M}_{\rm eff,0} + \lambda \mathcal{M}_{\rm eff,+} \mathcal{O}(\lambda^2)$$

Berry phase + Poynting tensor

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Thank you for your attention

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >