An Introduction to the Theory of Topological Insulators

At the Intersection of Analysis and Topology

Max Lein 2022.04.06@University of Groningen

Discrete Symmetries

Quick Dictionary between Physics and Mathematics

Hermitian = Selfadjoint Non-Hermitian = Non-Selfadjoint $H^{\dagger} = H^{*}$ $H^{*} = \overline{H}$

Discrete Symmetries

1 Overview of Topological Phenomena in Physics

2 Homotopy Definition of Topological Phases

3 Discrete Symmetries

Discrete Symmetries

1 Overview of Topological Phenomena in Physics

2 Homotopy Definition of Topological Phases

3 Discrete Symmetries

What Are Topological Phenomena?

What makes a physical effect topological?

Find a mathematical object (e.g. projection or vector bundle) whose topology manifests itself on the level of physics.

Bulk-Boundary Correspondence

$$O_{\rm bdy}(t)\approx T_{\rm bdy}=f(T_{\rm bulk})$$

Coupled Oscillators

Step 1: Bulk Classification

- Classify systems with certain symmetries
- Identify all topological invariants

Homotopy Definition

Discrete Symmetries

Bulk-Boundary Correspondences

Spectral flow

 $\sigma_{\text{edge}}^{\perp} \approx \frac{e^2}{h} \operatorname{Sf} = \frac{e^2}{h} (\operatorname{Ch}_{\mathrm{L}} - \operatorname{Ch}_{\mathrm{R}})$

Quantum Hall Effect

- Transverse edge conductivity
- Spectral flow
- Chern number

Homotopy Definition

Discrete Symmetries

Bulk-Boundary Correspondences

$$O_{\rm bdy}(t)\approx T_{\rm bdy}=f(T_{\rm bulk})$$

Generic case

- Physical observable on the boundary
- Topological **boundary** invariant
- Topological **bulk** invariant

Topological Phenomena $\begin{array}{c} v_2 \rightarrow -v_2 \\ 0 \\ 0 \end{array}$ $\left(\varepsilon_r, \mu_r \right)$

Bulk-Boundary Control for the set of the set

spectrum of photons in the (ε, μ) parameter space.

Moreover, we demonstrate that the helicity operator and helicity-based quantum-like form of Maxwell equations in a lossless medium is are non-Hermitian with re

standard inner product [18,19]. As a result, N modes are described by a two pairs of topolo

numbers:, which described by a rule pairs of inputnumbers:, which describes the winding of the helicity spectrum and labels topologically dithe non-Hermitian operator separated by the

helicity spectrum and labels topologically di the non-Hermitian operator separated by the points. This topological number can also be phase of the *complex Chern numbers* for phe medium (which becomes imaginary in metal

 $\mathcal{E}\mu < 0$). Moreover, there is a pair of addit indices, which describe the zones of the TE *i* polarizations of surface modes.

Conjecture (Bulk-Boundary Conjecture (Bliokh, Leykam, L. & Nori 2019))

$$\begin{split} & N_{\text{surf}}^{\Sigma} = N_{\text{surf}}^{\text{TE}} + N_{\text{surf}}^{\text{TM}} \\ & N_{\text{surf}}^{\text{TE}} = \frac{1}{2} \big(1 - \text{sgn} \, \varepsilon_{\text{r}} \big) = \frac{1}{2} \big(1 - \text{sgn}(\varepsilon_1) \, \text{sgn}(\varepsilon_2) \big) \\ & N_{\text{surf}}^{\text{TM}} = \frac{1}{2} \big(1 - \text{sgn} \, \mu_{\text{r}} \big) = \frac{1}{2} \big(1 - \text{sgn}(\mu_1) \, \text{sgn}(\mu_2) \big) \end{split}$$

Electromagnetic interface modes

- Number of boundary modes
- Topological **boundary** invariant
- Topological **bulk** invariant

(e,µ)

Bliokh, Leykam, L. & Nori, Nature Communications 10, issue 1, article 580, 2019

Bare Basics of Topological Bulk Classifications

- Symmetries of HSpectral gap \longleftrightarrow Topological class of H
- Topological class = U{Topological phases}
- Topological phase = Operators connected by symmetry- and gap-preserving continuous deformations
- Homotopy definition of topological phase
 → Usually first-principles starting point
- Phases labeled by a finite set of topological invariants \rightsquigarrow Typically take values in $\mathbb Z$ or $\mathbb Z_2$
- Number and nature of topological invariants depends on topological class and dimension

Bare Basics of Topological Bulk Classifications

- Symmetries of HSpectral gap \longleftrightarrow Topological class of H
- Topological class = U{Topological phases}
- Topological phase = Operators connected by symmetry- and gap-preserving continuous deformations
- Homotopy definition of topological phase

 → Usually first-principles starting point
- Phases labeled by a finite set of topological invariants \rightsquigarrow Typically take values in $\mathbb Z$ or $\mathbb Z_2$
- Number and nature of topological invariants depends on topological class and dimension

Discrete Symmetries

1 Overview of Topological Phenomena in Physics

2 Homotopy Definition of Topological Phases

3 Discrete Symmetries

Electromagnetic Interface Modes at Metal-Dielectric Interfaces

Maxwell's equations for homogeneous media

$$\begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{E}(t) \\ -\nabla \times \mathbf{H}(t) \end{pmatrix} \\ \begin{pmatrix} \nabla \cdot \varepsilon \mathbf{E}(t) \\ \nabla \cdot \mu \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Physical parameters

- Electric permittivity ε
- Magnetic permeability μ

- Parameter space $(\varepsilon, \mu) \in X := (\mathbb{R} \smallsetminus \{0\})^2$
- Topological bulk phases \rightsquigarrow Set of connected components $\pi_0(X)$ \rightsquigarrow Homotopy definition
- $[(\varepsilon,\mu)] \in \pi_0(X) = \{++,+-,-+,--\}$ \rightsquigarrow Not a group

Electromagnetic Interface Modes at Metal-Dielectric Interfaces

- Parameter space $(\varepsilon, \mu) \in X := (\mathbb{R} \smallsetminus \{0\})^2$
- Topological bulk phases \rightsquigarrow Set of connected components $\pi_0(X)$ \rightsquigarrow Homotopy definition
- $[(\varepsilon,\mu)] \in \pi_0(X) = \{++,+-,-+,--\}$ \rightsquigarrow Not a group

$$\begin{split} [(\varepsilon,\mu)] &:= \Big\{ (\varepsilon',\mu') \in X \ \big| \ \exists \text{ continuous path} \\ \gamma: [0,1] \longrightarrow X, \ \gamma(0) = (\varepsilon,\mu), \ \gamma(1) = (\varepsilon',\mu') \Big\} \end{split}$$

Quantization of Piezocurrents in Graphene-Like Materials

Single layer of boron nitride: honeycomb

$$\begin{split} & \mathbf{i}\varepsilon\partial_t\Psi(t)=H(t)\Psi(t)\\ & H(t+T)=H(t)=H(t)^*\in\mathcal{B}\bigl(\ell^2(\mathbb{Z}^2,\mathbb{C}^2)\bigr) \end{split}$$

• *ε* adiabatic parameter

Adiabatic approximation for time evolution
 → Simpler approximate time evolution

Quantization of Piezocurrents in Graphene-Like Materials

Single layer of boron nitride: honeycomb

Charge accumulated over one cycle in direction *j* approximately given by

$$\Delta \mathcal{P}_{j} \approx \mathrm{i} \int_{0}^{T} \mathrm{d}t \, \mathcal{T} \Big(P(t) \left[\partial_{t} P(t) \, , \, \partial_{k_{j}} P(t) \right] \Big) \in \mathbb{Z}$$

 \rightsquigarrow Formula for Chern number of a vector bundle over $\mathbb{T}^3 \implies \Delta \mathcal{P}_j \in \mathbb{Z}$, robust under continuous, gap-preserving transformations

Periodic Operators, Their Band Spectrum and the Bloch Bundle

Band spectrum of silicon along special directions

Exploit periodicity

• Discrete Fourier transform decomposes

$$H\cong \mathcal{F}\,H\,\mathcal{F}^{-1}=\int_{\mathbb{T}^d}^\oplus \mathrm{d}k\,H(k)$$

• $k \mapsto H(k)$ analytic

$$\bullet \ \sigma\big(H(k)\big) = \sigma_{\rm disc}\big(H(k)\big)$$

$$H(k)\varphi_n(k)=E_n(k)\,\varphi_n(k)$$

Kuchment, Floquet Theory for Partial Differential Equations, 1993

Periodic Operators, Their Band Spectrum and the Bloch Bundle

Analyticity of $k \mapsto H(k)$ implies

 $H(k)\varphi_n(k)=E_n(k)\,\varphi_n(k)$

- Band functions $k \mapsto E_n(k)$ continuous, locally analytic away from band crossings
- Bloch functions (eigenfunctions) $k \mapsto \varphi_n(k)$ locally analytic away from band crossings (suitable choice of phase)
- For family of bands **separated by a gap**: associated projection

$$P(k) = \sum_{n \in \mathcal{I}} |\varphi_n(k)\rangle \langle \varphi_n(k)|$$

is analytic on all of \mathbb{T}^d

Band spectrum of silicon along special directions

Periodic Operators, Their Band Spectrum and the Bloch Bundle

The Bloch bundle

$$\mathcal{E}(P):\bigsqcup_{k\in\mathbb{T}^d}\operatorname{ran} P(k)\longrightarrow\mathbb{T}^d$$

- Analytic vector bundle
- Oka principle applies: analytic triviality = topological triviality
- Topology of vector bundle (up to equivalence) characterized by Chern numbers (d ≤ 4)
- d = 2 + 1: 2 of 3 Chern numbers are

$$\Delta \mathcal{P}_j := \mathbf{i} \int_0^T \mathrm{d} t \, \mathcal{T} \Big(P(t) \left[\partial_t P(t) \,, \, \partial_{k_j} P(t) \right] \Big) \in \mathbb{Z}$$

Band spectrum of silicon along special directions

A Simple Model for Graphene-Like Materials and Its Parameter Space

$$H(q_1, q_2, q_3) = \begin{pmatrix} 0 & \mathbbm{1} + q_1 \, S_1 + q_2 \, S_2 \\ \mathbbm{1} + q_1 \, S_1 + q_2 \, S_2 & 0 \end{pmatrix} + \begin{pmatrix} +q_3 & 0 \\ 0 & -q_3 \end{pmatrix}$$

- Nearest-neighbor hopping parameters $q_1, q_2 \in \mathbb{R}$
- Stagger $q_3 \in \mathbb{R}$
- S_j shift operators in the j = 1, 2 direction

De Nittis & L., J. Phys. A 46, 2013

A Simple Model for Graphene-Like Materials and Its Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\, \underline{S_1} + q_2\, \underline{S_2}\right) \otimes \sigma_1 + q_3\, \mathbbm{1} \otimes \sigma_3$$

- Nearest-neighbor hopping parameters $q_1, q_2 \in \mathbb{R}$
- Stagger $q_3 \in \mathbb{R}$
- S_j shift operators in the j = 1, 2 direction

De Nittis & L., J. Phys. A 46, 2013

A Simple Model for Graphene-Like Materials and Its Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\,S_1 + q_2\,S_2\right) \otimes \sigma_1 + q_3\,\mathbbm{1} \otimes \sigma_3$$

- Relevant energy gap at E = 0
- 0 ∈ σ(H(q))?
 → Red region in q₁q₂-plane (q₃ = 0)
- Define parameter space

$$X := \Big\{ q \in \mathbb{R}^3 \ \big| \ 0 \notin \sigma \big(H(q) \big) \Big\}$$

for the gapped phase

De Nittis & L., J. Phys. A 46, 2013

Discrete Symmetries

Analyzing the Topology of Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\,S_1 + q_2\,S_2\right) \otimes \sigma_1 + q_3\,\mathbbm{1} \otimes \sigma_3$$

Full Model

- Connected components $\pi_0(X) = \{X\}$
- First homotopy group $\pi_1(X) = \mathbb{Z}^2$

Discrete Symmetries

Analyzing the Topology of Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\,S_1 + q_2\,S_2\right) \otimes \sigma_1 + q_3\,\mathbbm{1} \otimes \sigma_3$$

Model with Symmetry

- Impose $U_1 \, H \, U_1^{-1} \stackrel{!}{=} H$ where $U_1 = \mathbbm{1} \otimes \sigma_1$
- Implies $q_3 = 0$
- Reduced parameter space

$$X_{q_3=0}:= \big\{q\in X \ | \ q_3=0\big\}$$

where we impose gap and symmetry

Discrete Symmetries

Analyzing the Topology of Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\,S_1 + q_2\,S_2\right) \otimes \sigma_1 + q_3\,\mathbbm{1} \otimes \sigma_3$$

Model with Symmetry

- Impose $U_1 \, H \, U_1^{-1} \stackrel{!}{=} H$ where $U_1 = \mathbbm{1} \otimes \sigma_1$
- Implies $q_3 = 0$
- Reduced parameter space

$$X_{q_3=0}:= \big\{q\in X \ | \ q_3=0\big\}$$

where we impose gap and symmetry

Discrete Symmetries

Analyzing the Topology of Parameter Space

$$H(q_1,q_2,q_3) = \left(\mathbbm{1} + q_1\,S_1 + q_2\,S_2\right) \otimes \sigma_1 + q_3\,\mathbbm{1} \otimes \sigma_3$$

Full Model

• $\pi_0(X) = \{X\}$ vs. $\pi_0(X_{q_3=0}) = \{1, 2, 3\}$

•
$$\pi_1(X) = \mathbb{Z}^2$$
 vs. $\pi_1(X_{q_3=0}) = 0$

Periodic Deformations and Loops in Parameter Space

Time-periodic operators

- Assume H(t) = H(t+T) for some T > 0
- Assume H(t) of the form from before
- Assume H(t) is gapped for all $t \in \mathbb{R}$
- $\Longrightarrow \exists \ \mathsf{loop} \ \Gamma : [0,T] \longrightarrow X$ with

 $H(t) = H\big(\Gamma(t)\big) \iff \Gamma \leftrightarrow H$

Topological Charge Only Depends on $[\Gamma]\in\pi_1$

Assuming ... is true

- a $\Delta \mathcal{P}_j \in \mathbb{Z}$ topological invariant
- Invariant under continuous, gap-preserving deformations

- Value of $\Delta \mathcal{P}_j$ only depends on equivalence class $[\Gamma]$
- Induces maps $\pi_1(X), \pi_1(X_{q_3=0}) \longrightarrow \mathbb{Z}^2$
- $\bullet \ \pi_1(X) = \mathbb{Z}^2$

A Priori Knowledge

 \Longrightarrow compute $\Delta \mathcal{P}_j$ for generators of $\pi_1(X)$

• For
$$[\Gamma] = n_1 [\nu_1] + n_2 [\nu_2] \in \pi_1(X)$$

 $\Delta \mathcal{P}_j([\Gamma]) = n_1 \, \Delta \mathcal{P}_j([\nu_1]) + n_2 \, \Delta \mathcal{P}_j([\nu_2])$

- Symmetric model topologically trivial: $\Delta \mathcal{P}_j=0 \text{ as } \pi_1(X_{q_3=0})=0 \text{ and } H(t)\simeq H_0$

Topological Charge Only Depends on $[\Gamma] \in \pi_1$

Assuming ... is true

- a $\Delta \mathcal{P}_j \in \mathbb{Z}$ topological invariant
- Invariant under continuous, gap-preserving deformations

Theorem (De Nittis & L. (2013))

 $\Delta \mathcal{P}_j([\nu_k]) = \pm \delta_{jk} \neq 0$, i. e. model is topologically non-trivial

 \rightsquigarrow Important as $\Delta \mathcal{P}_j([\nu_j]) = 0$ is possible!

 \Rightarrow During deformation sgn q_3 needs to change!

De Nittis & L., J. Phys. A 46, 2013

Homotopy Definition

Discrete Symmetries

Take-Away Message

What have we learnt so far?

- Bulk-boundary correspondences: $physics \rightarrow topology$
- Needs to be established on case-by-case basis for classes of operators
- $\pi_0(X)$, $\pi_1(X)$, $\left[\mathbb{T}^d, \operatorname{Gr}_k(\mathbb{R}^j)\right]$ etc. have appeared
- \mathbb{Z} and \mathbb{Z}_2 -valued topological invariants characterize topological phase

Homotopy Definition 00000000●

Characterizing Topological Phases

Direct approach

- Advantage: Can provide exhaustive classification
- Vector bundles with symmetries ↔ vector bundles with symmetries (De Nittis & Gomi)
- Topology of non-selfadjoint tight-binding operators → braid group

(Wojcik, Sun, Bzdušek & Fan, Phys. Rev. B 101, 2020)

- Downside: $\pi_0(X)$ and homotopy groups not algorithmically computable!
- **Downside:** Typically very hard, limited to specific dimensions and situations

K-theoretic approach

• Advantage: K groups are algorithmically computable!

(Prodan & Schulz-Baldes, *Bulk and Boundary Invariants for Complex Topological Insulators*, 2016)

- Can deal with *disorder*
- Symmetries typically require sophisticated versions of *K*-theory

(Freed & Moore, Ann. Henri Poincaré 14, 2013)

- **Downside:** Generally provide a *coarse* classification of topological phases
 - → May not be enough to distinguish topological phases from one another

1 Overview of Topological Phenomena in Physics

2 Homotopy Definition of Topological Phases

3 Discrete Symmetries

Discrete Symmetries

Relevant Symmetries for Selfadjoint Operators

Symmetries for selfadjoint operators

 $U\,H\,U^{-1}=\pm H$

where U are (anti)unitary maps with $U^2=\pm\mathbb{1}$

Reducing out ordinary symmetry V

 $H \cong \begin{pmatrix} H_+ & 0 \\ 0 & H_- \end{pmatrix}$

 \rightsquigarrow study block operators H_\pm on eigenspaces of V

Туре	Condition on H	$\sigma(H) =$
ordinary	$VHV^{-1}=+H$	$+\sigma(H)$
chiral	$SHS^{-1}=-H$	$-\sigma(H)$
$\pm TR$	$T H T^{-1} = + H$	$+\sigma(H)$
$\pm PH$	$C H C^{-1} = -H$	$-\sigma(H)$

Discrete Symmetries

Relevant Symmetries for Selfadjoint Operators

Symmetries for selfadjoint operators

 $U\,H\,U^{-1}=\pm H$

where U are (anti)unitary maps with $U^2=\pm\mathbb{1}$

Reducing out ordinary symmetry V

 $H \cong \begin{pmatrix} H_+ & 0 \\ 0 & H_- \end{pmatrix}$

 \rightsquigarrow study block operators H_\pm on eigenspaces of V

Туре	Condition on H	$\sigma(H) =$
ordinary	$VHV^{-1}=+H$	$+\sigma(H)$
chiral	$S \mathrel{H} S^{-1} = -H$	$-\sigma(H)$
$\pm TR$	$T \mathrel{H} T^{-1} = + H$	$+\sigma(H)$
$\pm PH$	$C \mathrel{H} C^{-1} = -H$	$-\sigma(H)$

Discrete Symmetries

Relevant Symmetries for Selfadjoint Operators

Symmetries for selfadjoint operators

 $U\,H\,U^{-1}=\pm H$

where U are (anti)unitary maps with $U^2=\pm\mathbb{1}$

Reducing out ordinary symmetry V

 $H \cong \begin{pmatrix} H_+ & 0 \\ 0 & H_- \end{pmatrix}$

 \rightsquigarrow study block operators H_\pm on eigenspaces of V

Туре	Condition on H	$\sigma(H) =$
ordinary	$VHV^{-1}=+H$	$+\sigma(H)$
chiral	$SHS^{-1}=-H$	$-\sigma(H)$
$\pm TR$	$T H T^{-1} = + H$	$+\sigma(H)$
$\pm PH$	$C H C^{-1} = -H$	$-\sigma(H)$

Discrete Symmetries

Topological Classes

Symmetries of $H \ \longleftrightarrow \$ Topological Class of H

- **Relies on** $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $egin{aligned} U\,H(k)\,U^{-1} &= +H(-k) & ext{time-reversal symmetry (\pmTR)} \ U\,H(k)\,U^{-1} &= -H(-k) & ext{particle-hole (pseudo) symmetry (\pmPH)} \ U\,H(k)\,U^{-1} &= -H(+k) & ext{chiral (pseudo) symmetry (χ)} \end{aligned}$

• 1 + 5 + 4 = 10 topological classes

→ 10-Fold Way/Cartan-Altland-Zirnbauer Classification

• Physics *crucially* depends on topological class

Discrete Symmetries

Topological Classes

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathbf{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (\pmTR$)} \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (\pmPH$)} \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (χ)} \end{array}$

• 1 + 5 + 4 = 10 topological classes

→ 10-Fold Way/Cartan-Altland-Zirnbauer Classification

• Physics *crucially* depends on topological class

Discrete Symmetries

Topological Classes

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathbf{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & {\rm time-reversal\ symmetry\ (\pm TR)}\\ U\,H(k)\,U^{-1}=-H(-k) & {\rm particle-hole\ (pseudo)\ symmetry\ (\pm PH)}\\ U\,H(k)\,U^{-1}=-H(+k) & {\rm chiral\ (pseudo)\ symmetry\ (\chi)} \end{array}$

• 1 + 5 + 4 = 10 topological classes

→ 10-Fold Way/Cartan-Altland-Zirnbauer Classification

• Physics *crucially* depends on topological class

Discrete Symmetries

Topological Classes

Symmetries of $H \iff$ Topological Class of H

- Relies on $i\partial_t \psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (}\pm\mbox{TR}) \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (}\pm\mbox{PH}) \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (}\chi) \end{array}$

• 1 + 5 + 4 = 10 topological classes

→ 10-Fold Way/Cartan-Altland-Zirnbauer Classification

• Physics *crucially* depends on topological class

Discrete Symmetries

Topological Classes

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathbf{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (\pmTR$)} \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (\pmPH$)} \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (χ)} \end{array}$

• 1 + 5 + 4 = 10 topological classes

→ 10-Fold Way/Cartan-Altland-Zirnbauer Classification

• Physics *crucially* depends on topological class

Discrete Symmetries

Topological Classes

Symmetries of $H \iff$ Topological Class of H

- Relies on $\mathbf{i}\partial_t\psi = H\psi$ (Schrödinger equation)
- 3 types of (pseudo) symmetries: U unitary/antiunitary, $U^2 = \pm 1$,

 $\begin{array}{ll} U\,H(k)\,U^{-1}=+H(-k) & \mbox{time-reversal symmetry (\pmTR$)} \\ U\,H(k)\,U^{-1}=-H(-k) & \mbox{particle-hole (pseudo) symmetry (\pmPH$)} \\ U\,H(k)\,U^{-1}=-H(+k) & \mbox{chiral (pseudo) symmetry (χ)} \end{array}$

- 1 + 5 + 4 = 10 topological classes
 → 10-Fold Way/Cartan-Altland-Zirnbauer Classification
- Physics *crucially* depends on topological class

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- *Continuous, symmetry-preserving* deformations of *H* cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of **topological invariants** (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries \Longleftrightarrow topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- *Continuous, symmetry-preserving* deformations of *H* cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of **topological invariants** (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by
 - symmetries \iff topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

Phases Inside Topological Classes

- Inequivalent phases inside each topological class
- *Continuous, symmetry-preserving* deformations of *H* cannot change topological phase, unless either
 - the energy gap closes (periodic case) or
 - a localization-delocalization transition happens (random case)
- Phases labeled by finite set of **topological invariants** (e. g. Chern numbers but also others)
- Number and type of topological invariants determined by

 symmetries ⇔ topological class and
 - dimension of the system
- Notion that Topological Insulator \iff Chern number \neq 0 *false!*

Homotopy Definition

Discrete Symmetries

Bulk-Boundary Correspondences

$$O_{\rm bdy}(t)\approx T_{\rm bdy}=f(T_{\rm bulk})$$

- Properties on the boundary can be inferred from the bulk
- Hard physics problem: Find topological observables $O_{\rm bdv}(t)$
- Hard math problem: Number and type ↔ topological class

Homotopy Definition

Discrete Symmetries

Bulk-Boundary Correspondences

$$O_{\rm bdy}(t) \approx T_{\rm bdy} = f(T_{\rm bulk})$$

- Properties on the boundary can be inferred from the bulk
- Hard physics problem: Find topological observables $O_{\rm bdv}(t)$
- Hard math problem: Number and type \leftrightarrow topological class

Homotopy Definition

Discrete Symmetries

Bulk-Boundary Correspondences

$$O_{\rm bdy}(t)\approx T_{\rm bdy}=f(T_{\rm bulk})$$

- Properties on the boundary can be inferred from the bulk
- Hard physics problem: Find topological observables $O_{\rm bdv}(t)$
- Hard math problem: Number and type \leftrightarrow topological class

Homotopy Definition

Discrete Symmetries

Thank you! Q&A