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Lagrangian system

• Lagrangian system: (Q, L) [see e.g. Abraham & Marsden (1978)]

◦ Q, configuration manifold;
◦ L : TQ → R, (continuous) Lagrangian.

• Hamilton’s principle: Actual trajectories c ∈ C2(q0, q1, [t0, t1]) of the
system are critical points of the action S : C 2(q0, q1, [t0, t1]) → R,

S[c] =
∫ t1

t0

L(c(1)(t)) dt =

∫ t1

t0

L(qi (t), q̇i (t)) dt

• Critical iff Euler-Lagrange eqs. (EL) satisfied:
d

dt

(
∂L

∂q̇i
(q(t), q̇(t))

)
− ∂L

∂qi
(q(t), q̇(t)) = 0, i = 1, ..., n = dimQ

• Legendre transformation: FL : TQ → T ∗Q, locally

(qi , q̇i ) 7→
(
qi , pi :=

∂L
∂q̇i

(q, q̇)
)
. If FL local (global) isomorphism, L

regular (hyperregular)

−→ Hamiltonian description
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Discrete mechanical systems

Discrete Lagrangian problem

• Discrete Lagrangian system: (Q, Ld) [Marsden & West (2001)]

◦ Q, configuration manifold;
◦ Ld : Q × Q → R, discrete Lagrangian.

• Variational problem: Find critical cd := {qk ∈ Q}Nk=0 of

Sd [cd ] :=
∑N−1

k=0 Ld(qk , qk+1) with fixed q0, qN .

• Critical iff discrete Euler-Lagrange eqs (DEL) satisfied:

D2Ld(qk−1, qk) + D1Ld(qk , qk+1) = 0, k = 1, ...,N − 1

Regularity

A discrete Lagrangian, Ld : Q × Q → R, is said to be regular if its

associated block matrix Wd = D12Ld =

(
∂2Ld
∂q0∂q1

)
is regular.
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Introduction Discrete variational problems

Discrete fibre derivatives

F−Ld : Q × Q → T ∗Q
(q0, q1) 7→ (q0, p0 := −D1Ld(q0, q1))

F+Ld : Q × Q → T ∗Q
(q0, q1) 7→ (q1, p1 := D2Ld(q0, q1))

If these are local isomorphisms, then Ld is said to be regular.

Equivalent to D12Ld(q0, q1) regular.

Discrete flows

Discrete Lagrangian flow: FLd : Q × Q → Q × Q, induced by DEL.

Discrete Hamiltonian flow: F̃Ld : T ∗Q → T ∗Q,

F̃Ld = F±Ld ◦ FLd ◦ (F±Ld)
−1.

Symplecticity (F̃Ld )
∗ωQ = ωQ .
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Exact discrete Lagrangian

Relation with continuous Lagrangian problems

Ld(qk , qk+1) ≈
∫ h
0 L(q(t), q̇(t))dt, fixed h ∈ R, q solution of continuous

Euler-Lagrange equations s.t. q(0) = qk , q(h) = qk+1.

Led(q0, q1) =

∫ h

0
L(q(t), q̇(t)) dt,

where q(t) is a trajectory of the continuous system joining q0 to q1 for
time h. If L is regular, then Led regular.
If q(t) is a solution of the continuous system, then the evolution of the
discrete system for Led yields the sequence q(0), q(h), q(2h), q(3h), . . .



Introduction Discrete variational problems

Exact Discrete Lagrangian problem

Marsden-West 2001

Let Ld : Q × Q → R be a discrete Lagrangian. We say that Ld is a
discretization of order r if there exist an open subset U1 ⊂ TQ with
compact closure and constants C1 > 0, h1 > 0 so that

|Ld(q(0), q(h))− Led(q(0), q(h))| ≤ C1h
r+1

for all solutions q(t) of the second-order Euler–Lagrange equations with
initial conditions (q0, q̇0) ∈ U1 and for all h ≤ h1.

Theorem [Patrick & Cuell, 2009]

If L is a regular Lagrangian and Ld is a discrete Lagrangian for L of order
r , then

F̃Ld = F̃Led +O(hr+1)
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Introduction Higher order discrete mechanical systems

γ-th order Lagrangian problems

(Q, L) with L : T (γ)Q → R Lagrangian function.

Point q[γ] ∈ T (γ)Q, local coords. (q, q̇, ..., q(γ)).

Higher order Euler-Lagrange equations (ODEs of order 2γ):
γ∑

α=0

(−1)α
dα

dtα

(
∂L

∂q(α)i

)
= 0, i = 1, ..., dimQ

Fibre derivative:

FL : T (2γ−1)Q → T ∗T (γ−1)Q

(qi , ..., q(2γ−1) i ) 7→ (qi , ..., q(γ−1) i , pi ,0, ..., pi ,γ−1)

with pi ,α =
∑γ−α−1

β=0 (−1)β dβ

dtβ

(
∂L

∂q(β+α+1)i

)
Jacobi-Ostrogradski

momenta.

DMdD Two applications University of Groningen 8 / 92



Example: Second order Lagrangian problem

• Lagrangian system: (T (2)Q, L)

• Euler-Lagrange equations:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
+

d2

d2t

(
∂L

∂q̈i

)
= 0, i = 1, ..., n
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Higher order discrete mechanical systems

For the γ-th order case, a discrete Lagrangian is given as a function

Ld : T
(γ−1)Q × T (γ−1)Q → R

The is a sum
N−1∑
k=0

Ld(q
[γ−1]
k , q

[γ−1]
k+1 )

The condition that a sequence {q[γ−1]
k }Nk=0 of points in T (γ−1)Q be

critical for the discrete action, with fixed endpoints q
[γ−1]
0 and q

[γ−1]
N , is

equivalent to the equations

D2Ld(q
[γ−1]
k−1 , q

[γ−1]
k ) + D1Ld(q

[γ−1]
k , q

[γ−1]
k+1 ) = 0

(DEL equations, order γ).
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Second order discrete mechanical systems

Second order discrete Lagrangian problem

[Colombo, Ferraro, MdD (2016)]
TQ, configuration manifold;

◦◦ Ld : TQ × TQ → R, discrete Lagrangian.

Variational problem: Find critical cd := {(qk , vk) ∈ TQ}Nk=0 of

Sd [cd ] :=
∑N−1

k=0 Ld(qk , vk , qk+1, vk+1) with fixed (q0, v0), (qN , vN).

•• Critical iff discrete Euler-Lagrange eqs (DEL) satisfied:

D3Ld(qk−1, vk−1, qk , vk) + D1Ld(qk , vk , qk+1, vk+1) = 0, k = 1, ...,N − 1

D4Ld(qk−1, vk−1, qk , vk) + D2Ld(qk , vk , qk+1, vk+1) = 0.



Introduction Higher order discrete mechanical systems

Regularity

A discrete Lagrangian, Ld : T (γ−1)Q × T (γ−1)Q → R, is said to be

regular if its associated block matrix Wd =

(
∂2Ld

∂q
[γ−1]
0 ∂q

[γ−1]
1

)
or

Wd =



∂2Ld
∂q0∂q1

∂2Ld
∂q0∂q̇1

· · · ∂2Ld
∂q0∂q

(γ−1)
1

∂2Ld
∂q̇0∂q1

∂2Ld
∂q̇0∂q̇1

· · · ∂2Ld
∂q̇0∂q

(γ−1)
1

...
...

. . .
...

∂2Ld
∂q

(γ−1)
0 ∂q1

∂2Ld
∂q

(γ−1)
0 ∂q̇1

· · · ∂2Ld
∂q

(γ−1)
0 ∂q

(γ−1)
1


is regular.
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Introduction Higher order discrete mechanical systems

Exact discrete Lagrangian

Starting from a continuous Lagrangian L, we define the exact discrete
Lagrangian as

Led(q
[γ−1]
0 , q

[γ−1]
1 ) =

∫ h

0
L(q[γ](t)) dt

where q : [0, h] → Q is the unique C 2γ solution curve of the
Euler-Lagrange equations satisfying the boundary conditions

q[γ−1](0) = q
[γ−1]
0 and q[γ−1](h) = q

[γ−1]
1 .

This exact discrete Lagrangian
is well-defined for h small enough and in a neighborhood Uh of the
diagonal of T (γ−1)Q × T (γ−1)Q. We also know that Uh degenerates into
the diagonal for h = 0.
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Boundary value problems

The boundary value problem posed by these equations, i.e.

given fixed q
[γ−1]
0 , q

[γ−1]
N find c∗d s.t. c∗d(0) = q

[γ−1]
0 , c∗d(N) = q

[γ−1]
N

D2Ld(q
[γ−1]
0 , q

[γ−1]
1 ) + D1Ld(q

[γ−1]
1 , q

[γ−1]
2 ) = 0,

D2Ld(q
[γ−1]
1 , q

[γ−1]
2 ) + D1Ld(q

[γ−1]
2 , q

[γ−1]
3 ) = 0,

. . . = . . .

D2Ld(q
[γ−1]
N−2 , q

[γ−1]
N−1 ) + D1Ld(q

[γ−1]
N−1 , q

[γ−1]
N ) = 0



This problem can be solved using different strategies, e.g.

• Initial value methods

◦ Simple shooting (Can be highly unstable)
◦ Multiple shooting (Better alternative. Admits parallelization)

• Global or finite difference methods (Can require a lot of memory and
computational power)

Our approach is a parallelized relaxation approach based on the latter
methods.
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Parallel algorithm

Problem divided in independent sub-problems. Outputs are combined to
form desired output.

q
[γ−1]
0

q
[γ−1]
1

q
[γ−1]
2

q
[γ−1]
3

q̄
[γ−1]
1

q̄
[γ−1]
2

Figure: An iteration of the parallel method, for N = 3.



Parallel approach

Find a sequence {qk}Nk=0 that is a solution of DEL.

Parallelized Discrete Euler-Lagrange equations

• Choose initial guess c0d , such that c0d(0) = q0, c
0
d(N) = qN ;

• Find cℓd satisfying cℓd(0) = q0, c
ℓ
d(N) = qN and

D2Ld(q
ℓ−1
k−1, q

ℓ
k) + D1Ld(q

ℓ
k , q

ℓ−1
k+1) = 0 k = 1, ...,N − 1, ℓ = 1, 2, ...

DMdD Two applications University of Groningen 17 / 92



Parallel approach

Convergence

Root-finding problem: f = (f1, ..., fn) : Rn → Rn, find x∗ ∈ Rn s.t.
f (x∗) = 0. We may parallelize the problem as follows:

Algorithm. Nonlinear Jacobi method

• Choose initial guess x0 = (x01 , x
0
2 , . . . , x

0
n );

• Find xℓ satisfying

f (x11 , ..., x
ℓ−1
k−1, x

ℓ
k , x

ℓ−1
k+1, ..., x

ℓ−1
n ) = 0, k = 1, ...,N − 1, ℓ = 1, 2, ...

f1(x
1
1 , x

0
2 , . . . , x

0
n ) = 0,

f2(x
0
1 , x

1
2 , ..., x

0
n ) = 0,

. . . = 0

fn(x
0
1 , x

0
2 , . . . , x

1
n ) = 0
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Convergence

Theorem. Convergence of the Jacobi process [see Vrahatis (2003)]

Let F : D ⊂ Rn → R be twice continuously differentiable in an open
neighborhood S0 ⊂ D of a point x∗ ∈ D for which f (x∗) := ∇F (x∗) = 0,
and suppose that the Hessian H(x∗) of F is positive definite,
block-tridiagonal with regular blocks on the diagonal. Then there exists an
open ball S ⊂ S0 centered at x∗ such that any sequence

{
x j
}∞
j=0

, x0 ∈ S,
generated by the nonlinear Jacobi process converges to x∗.



Parallel approach Mechanical context

Given N, (ta, qa) = (t0, q0), (tb, qb) = (tN , qN), find a sequence
c̊∗d := {(tk , qk)}N−1

k=1 with tk+1 − tk = h that is a solution of DEL.

Parallelized Discrete Euler-Lagrange equations

Choose initial guess c̊0d ;

Find c̊ℓd satisfying

D2Ld(q
ℓ−1
k−1, q

ℓ
k) + D1Ld(q

ℓ
k , q

ℓ−1
k+1) = 0 k = 1, ...,N − 1, ℓ = 1, 2, ...

Convergence can be accelerated by bundling several nodes together at the
expense of increased load per thread, i.e. instead of solving
(qℓ−1

k−1, q
ℓ
k , q

ℓ−1
k+1), solve (qℓ−1

k−a, q
ℓ
k−a+1, ..., q

ℓ
k , ..., q

ℓ
k+b−1, q

ℓ−1
k+b) with

a+ b ≥ 2.
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(qℓ−1

k−1, q
ℓ
k , q

ℓ−1
k+1), solve (qℓ−1

k−a, q
ℓ
k−a+1, ..., q

ℓ
k , ..., q

ℓ
k+b−1, q

ℓ−1
k+b) with

a+ b ≥ 2.
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Parallel approach Mechanical context

Given N, (ta, qa) = (t0, q0), (tb, qb) = (tN , qN), find a sequence
c̊∗d := {(tk , qk)}N−1

k=1 with tk+1 − tk = h that is a solution of DEL.

Parallelized Discrete Euler-Lagrange equations
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ℓ−1
k+b) with

a+ b ≥ 2.
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Parallel approach Convergence in mechanical context

Ingredients

c̊∗d acts as our x∗;

JLd [c
∗
d ] acts as our F (x

∗);

∇F (x∗) are the DEL.

We need to show that the Hessian H(x∗) of F is positive definite.
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Boundary value problems in mechanics

The discrete equations for Ld are ∇F = 0 where F is the discrete action∑N−1
k=0 Ld(q

[γ−1]
k , q

[γ−1]
k+1 ) as a function of x = q[γ−1] = (q

[γ−1]
1 , . . . , q

[γ−1]
N−1 ),

and q
[γ−1]
0 and q

[γ−1]
N are fixed. Since Ld is C 2, then the Hessian of F is

symmetric and has the block tridiagonal form

H(q[γ−1]) =


D1 C1

CT
1 D2 C2

. . .
. . .

. . .

CT
N−3 DN−2 CN−2

CT
N−2 DN−1



Dk = D22Ld(q
[γ−1]
k−1 , q

[γ−1]
k ) + D11Ld(q

[γ−1]
k , q

[γ−1]
k+1 ), k = 1, . . . ,N − 1,

Ck = D12Ld(q
[γ−1]
k , q

[γ−1]
k+1 ), k = 1, . . . ,N − 2.



Parallel approach Convergence in mechanical context

Convergence

Jacobi convergence

Let q[γ−1]∗ = (q
[γ−1]∗
1 , . . . , q

[γ−1]∗
N−1 ) be a solution of the DEL equations for

fixed q
[γ−1]
0 and q

[γ−1]
N . If the Hessian of the discrete action, H(q[γ−1]∗), is

positive definite, then the block Jacobi method converges locally to
q[γ−1]∗.
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Convergence

H(q[γ−1]) =


B0 + A1 C1

C⊤
1 B1 + A2 C2

. . .
. . .

. . .

C⊤
N−3 BN−3 + AN−2 CN−2

C⊤
N−2 BN−2 + AN−1


where

Ak = D11Ld(q
[γ−1]
k , q

[γ−1]
k+1 ), k = 1, . . . ,N − 1,

Bk = D22Ld(q
[γ−1]
k , q

[γ−1]
k+1 ), k = 0, . . . ,N − 2,

Ck = D12Ld(q
[γ−1]
k , q

[γ−1]
k+1 ), k = 1, . . . ,N − 2,

and q
[γ−1]
0 , q

[γ−1]
N are fixed.



Parallel approach Convergence in mechanical context

Theorem

Denote by Di = Bi−1 +Ai , 1 ≤ i ≤ N − 1.
If the matrices defined iteratively by Λ1 = D1 = B0 +A1 and

Λi = Di − CT
i−1Λ

−1
i−1Ci−1, 2 ≤ i ≤ N − 1

are all positive definite then the Hessian matrix H((q[γ−1])) is positive
definite.
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Parallel approach Convergence in mechanical context

However, we want more!

Relevant questions

If Ld is a discretization of L, what can we say about HLd ?

Is HLd positive-definite if D22L positive-definite?

Is HLd even regular if L is regular?

These are not so immediate to answer. Non-local!
Jacobi equations and conjugate points (continuous and discrete). Work in
progress
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Zermelo’s navigation problem

From (Zermelo, 1931), (Bao et al., 2004), (Javaloyes, Sánchez, 2017),
(Kopacz, 2019) and more...



Zermelo’s navigation problem

Statement

Time-optimal control problem: Find the minimum time (ship) trajectories
γ on a Riemannian manifold (Q, g) under the influence of a drift vector
field (wind) W ∈ X(Q). Assume ∥γ̇(s)−W (γ(s))∥g = 1 and
α(q) := 1− ∥W (q)∥g > 0 for all q ∈ Q.

These minimum time trajectories are geodesics for a Randers metric:

F (q, vq) =
√
a(vq, vq) + ⟨b(q), vq⟩ ,

where

a(vq, vq) :=
1

α(q)
g(vq, vq) + ⟨b(q), vq⟩2,

⟨b(q), vq⟩ := − 1

α(q)
g(W (q), vq).



Zermelo’s navigation problem II

The time it takes the ship to move along a curve γ : [s0, sN ] → Q is

t[γ] =

∫ sN

s0

F (γ(s), γ̇(s)) ds.

The action functional

S[γ] =
∫ sN

s0

L(γ(s), γ̇(s)) ds :=

∫ sN

s0

F (γ(s), γ̇(s))2 ds ,

defines a regular Lagrangian whose extremals will coincide with
time-extremal curves.
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F (γ(s), γ̇(s)) ds.

The action functional

S[γ] =
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L(γ(s), γ̇(s)) ds :=

∫ sN

s0

F (γ(s), γ̇(s))2 ds ,

defines a regular Lagrangian whose extremals will coincide with
time-extremal curves.



Example

• Q = R2, Euclidean metric.

• W = 1.7 · (−R2,2 − R4,4 − R2,5 + R5,1), where

Ra,b(x , y) =
1

3((x − a)2 + (y − b)2) + 1

[
−y + b
x − a

]
• Discrete Lagrangian:

Ld(q0, q1) =
h

2

[
F

(
q0,

q1 − q0
h

)2

+ F

(
q1,

q1 − q0
h

)2
]
.

• Boundary conditions: q0 = (0, 0), q80 = (6, 2).



Zermelo’s navigation problem

Figure: Several local solutions to the optimal time navigation problem starting
from (0, 0) and ending at (6, 2). The time for each trajectory is shown.



Fuel-optimal navigation problem

A related but inequivalent variant of the problem:

Statement

Let T > 0 be a fixed time. Find trajectories from (x(0), y(0)) to
(x(T ), y(T )) minimizing the cost functional

S[u] =
∫ T

0

1

2
(u21 + u22) dt ,

subject to

ẋ = u1 +W1(x , y) ,

ẏ = u2 +W2(x , y) .

This problem is equivalent to solving the Euler-Lagrange equations for the
Lagrangian

L(x , y , ẋ , ẏ) =
1

2

[
(ẋ −W1(x , y))

2 + (ẏ −W2(x , y))
2
]
.



Applications Zermelo

Example

• Q = R2, Euclidean metric.

• W = (cos(2x − y − 6), 2/3 sin(y) + x − 3).

• Discrete Lagrangian:

Ld(q0, q1) =
h

2

[
L

(
q0,

q1 − q0
h

)
+ L

(
q1,

q1 − q0
h

)]
.

• N = 200.

• Total navigation time T = 30.

• Boundary conditions: q(0) = (0, 0), q(T ) = (6, 5).
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Applications Zermelo

Example
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Smooth fuel-optimal navigation problem

Statement

Let T > 0 be a fixed time. Find trajectories passing through given points
{q(ti )}mi=1, 0 = t0 < ... < ti < ... < tm = T , with q̇(0) and q̇(T ) fixed,
minimizing the cost functional

S[u] =
∫ T

0

1

2

[
u21 + u22 + c(v21 + v22 )

]
dt ,

with c > 0 subject to

ẋ = u1 +W1(x , y), ẏ = u2 +W2(x , y),
u̇1 = v1, u̇2 = v2 .

Equivalent to solving the Euler-Lagrange equations of

L(x , y , ẋ , ẏ , ẍ , ÿ) =
1

2

[
(ẋ −W1(x , y))

2 + (ẏ −W2(x , y))
2

+ c (ẍ − D1W1(x(t), y(t))ẋ − D2W1(x(t), y(t))ẏ)
2

+c (ÿ − D1W2(x(t), y(t))ẋ − D2W2(x(t), y(t))ẏ)
2
]



Example

• Q = R2, Euclidean metric.

• W same as in the former example.

• Discrete Lagrangian:

Ld(q0, v0, q1, v1) =
h

2

[
L

(
q0, v0,

2

h2
(3(q1 − q0)− h(v1 + 2v0)

)
+ L

(
q1, v1,−

2

h2
(3(q1 − q0)− h(2v1 + v0)

)]
• c = 50, N = 240.

• Total navigation time T = 60.

• Boundary conditions: (q(0), v(0)) = (0, 0, 0, 0),
(q(T ), v(T )) = (3, 5, 0, 0).

• Interpolation conditions: q(T/3) = (1, 3), q(2T/3) = (5, 2).



Example
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• Conclusions:

◦ Discrete variational methods combined with a parallel iterative
approach are well-suited for boundary value problems.

◦ These give us alternatives to multiple shooting and are suited for
GPU implementation.

◦ Tested in three examples related with navigation problems.
◦ Can be readily extended to the Lie group setting.

• Outlook:

◦ Handling of equality constraints.
◦ Handling of inequality constraints via penalty potentials and coupling
with iteration progress.

◦ Application to new examples (astrodynamics, time-dependent flows...)



Outlook

Real application

Figure: Prototype of web application for the Smart Shipping weather
routing project. Red : original route. Blue : optimized route, consuming
3.7% less fuel and reducing 72 tons of GHG emissions.
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Outlook

Second application:
accelerated optimization
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Motivation

X input space
Y output space
Θ Parameter space
A map Ψ : X ×Θ −→ Y is called a neural network



Motivation

Modern statistical data analysis involves very large data sets and very large
parameter spaces, so that computational efficiency is very importance in
practical applications.

In large-scale data analysis, in many cases algorithms need to be linear, or
nearly linear, in relevant problem parameters.



Motivation

For a given finite set of pairs (xi , yi ) ∈ X × Y (training data), try to
determine parameters θ∗ ∈ Θ such that

Ψ(xi , θ
∗) ≈ yi

At the end, a neural network is a function (perhaps) consisting of
thousands or millions of parameters, that represents a mathematical
solution to a real problem.



Motivation

The function Ψ : X ×Θ −→ Y typically consists of a composition of
S-layers: {ψ0, ψ1, ψS−1}

Ψ = ψS−1 ◦ . . . ◦ ψ1 ◦ ψ0

where ψs : X k ×Θk −→ X k+1, where X 0 = X and X S = Y.



Loss function:
L : Y × Y −→ R

for instance L(y , y∗) = 1
2∥y − y∗∥2

Given the training data (xi , yi ) ∈ X × Y 1 ≤ i ≤ N (training data) define
the Total Loss

min
θ∈Θ

{
1

N

N∑
i=1

L(Ψ(xi , θ), yi ) + R(θ)

}

R is a regularizer penalizing unwanted parameter solutions.

arg min
x∈D

f (x)

Optimizers are used to solve optimization problems by minimizing the
function!
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Is there an optimal way to optimize?



Gradient descend

arg min
x∈D

f (x)

xk+1 = xk − ϵ∇f (xk)

The idea is to take repeated steps in the opposite direction of the gradient
of f at the current point, because this is the direction of steepest descent.

However, the iterates may converge
slowly. Converge to the optimum at
the rate O(1/k), where k is the
number of iterations.

ẋ = −∇f (x)



Simple Test Function

Rosenbrock function, 1960

f (x , y) = (a− x)2 + b(y − x2)2

Steep well, flat valley

Banana shaped

Global minimum at (a, a2)

f (a, a2) = 0

 https://en.wikipedia.org/wiki/Rosenbrock_function 


Gradient descent

[][]



In
A.Nemirovsky and D.Yudin,Problem complexity and method
efficiency in optimization Problem, ser. Interscience Series in
Discrete Mathematics. John Wiley, 1983.

proved that no first-order method can converge at a rate faster than
O(1/k2) on convex optimization problems with Lipschitz-continuous
gradient.



Accelerated optimization

In 1983,
Y. Nesterov, A method of solving a convex programming prob-
lem with convergence rate O(1/k2), Soviet Mathematics Dok-
lady, vol. 27, pp. 372–376, 1983.

introduced a new method, Nesterov Accelerated Gradient (NAG), that
further improved the convergence rate.



Nesterov Accelerated Gradient

x∗ = arg minx∈D f (x)

xk+1 = yk − ϵ∇f (yk)

yk = xk +
k − 1

k + 2
(xk − xk−1)

Gradient Descent Accelerated GD

[Nesterov83]

accelerate!

optimal rate

descent 
method

oscillatory,
but faster

Convergence rate O(1/k2)
Oscillatory but faster

ẍ +
3

t
ẋ +∇f (x) = 0

(SU, Boyd, Candes ’16)



Optimization meets Geometric Mechanics

ẍ +
3

t
ẋ +∇f (x) = 0

W. Su, S. Boyd, and E. J. Candès, A differential equation for modeling
nesterov’saccelerated gradient method: Theory and insights, Journal
of Machine Learning Research, 17 (2016), pp. 1–43.

Euler-Lagrange equations

L(x , ẋ , t) = t3
(
1

2
ẋ − f (x)

)
A. Wibisono, A. C. Wilson, and M. I. Jordan, A variational perspective
on accelerated methods in optimization, Proc. Natl. Acad. Sci. USA,
113 (2016), pp. E7351–E7358
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“Such a variational perspective also has the advantage of being
generative—we can derive algorithms that achieve fast rates rather than
requiring an analysis to establish a fast rate for a specific algorithm that is
derived in an adhoc manner”...

Michael I. Jordan DYNAMICAL, SYMPLECTIC AND STOCHASTIC
PERSPECTIVES ON GRADIENT-BASED OPTIMIZATION, Proceedings
of the Internation Congress of Mathematiciens – 2018 Rio de Janeiro, Vol.
1 (523–550)

...“we will find that symplectic integrators, which are widely used for
integrating dynamics obtained from variational or Hamiltonian
perspectives, are relevant in the optimization setting”
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Bregman Lagrangians

Define a Bregman divergence :

BΦ(x , y) = Φ(x)− Φ(y)− ⟨dΦ(y), x − y⟩ .

Φ is a convex distance-generating function
As a typical example, if Φ(x) = 1

2∥x∥
2 then

BΦ(x , y) =
1

2
∥x − y∥2 .



From a Bergman divergence we can construct the Bregman kinetic energy
K : R× TRn → R by

K (x , v , t) = BΦ(x + e−α(t)v , x)

and the potential energy

U(x , t) = eβ(t)f (x)

to then define the Bregman Lagrangian:

L(x , v , t) = eα(t)+γ(t) (K (x , v , t)− U(x , t))

where the time-dependent functions α(t), β(t), γ(t) are chosen to produce
different algorithms.



Time-dependent mechanics

Let Q be a manifold and TQ its tangent bundle. As usual, coordinates
(x i ) on Q induce coordinates (x i , ẋ i ) on TQ. Therefore we have natural
coordinates (x i , ẋ i , t) on TQ × R which is the appropriate velocity phase
space for time-dependent systems.

Let a, b ∈ R with a < b, given two
points xa, xb ∈ Q, we consider the set of curves:

C 2([a, b], xa, xb) = {σ : [a, b] → Q | σ ∈ C 2 with σ(a) = xa, σ(b) = xb}

Given a time-dependent Lagrangian function L : TQ × R → R define
the action JL : C

2([a, b], xa, xb) → R by

JL(σ) =

∫ b

a
L(σ′(t), t) dt (1)

where σ′ : [a, b] → TQ is defined by σ′(t) = dσ
dt (t) ∈ Tσ(t)Q.
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Time-dependent mechanics

Euler-Lagrange equations:

d

dt

(
∂L

∂ẋ i

)
− ∂L

∂x i
= 0, 1 ≤ i ≤ n = dimQ (2)

dEL

dt
=
∂L

∂t
.



Time-dependent mechanics

FL : TQ × R → T ∗Q × R

FL(x i , ẋ i , t) = (x i ,
∂L

∂ẋ i
, t)

Take induced coordinates (x i , pi , t) on T ∗Q × R.
We assume that the Legendre transformation is a diffeomorphism (that is,
the Lagrangian is hyperregular) and define the Hamiltonian function
H : T ∗Q × R → R by:

H = EL ◦ (FL)−1 .



Time-dependent mechanics

Define the projections pr1 : T
∗Q × R → T ∗Q and pr2 : T

∗Q × R → R we
induce the cosymplectic structure (ΩH , η) on T ∗Q × R where

η = pr∗2dt , ΩH = −d(pr∗1θQ − Hη) = ΩQ + dH ∧ dt .

Here θQ denotes the Liouville 1-form on T ∗Q given in induced coordinates
by θQ = pi dx

i . Denote by ΩQ = −dpr∗1θQ the pullback of the canonical
symplectic 2-form ωQ = −dθQ on T ∗Q. In coordinates, ΩQ = dx i ∧ dpi
(observe that now ΩQ is presymplectic since ker ΩQ = span {∂/∂t}).
Therefore in induced coordinates (x i , pi , t):

ΩH = dx i ∧ dpi + dH ∧ dt , η = dt



Time-dependent mechanics

We define the evolution vector field EH ∈ X(T ∗Q × R) by

iEH
ΩH = 0 , iEH

η = 1

In local coordinates the evolution vector field is:

EH =
∂

∂t
+
∂H

∂pi

∂

∂x i
− ∂H

∂x i
∂

∂pi
.

The integral curves of EH are given by:

ṫ = 1 , ẋ i =
∂H

∂pi
, ṗi = −∂H

∂x i
.

The integral curves of EH are precisely the curves of the form
t → FL(σ′(t), t) where σ : I → Q is a solution of the Euler-Lagrange
equations for L : TQ × R → R.



Time-dependent mechanics. An example

If we consider the Nesterov Lagrangian function L : TRn × R → R

L(x , ẋ , t) = t3
(
1

2
∥ẋ∥2 − f (x)

)
. (3)

The Legendre transformation is FL(x , ẋ , t) = (x , p = t3ẋ , t) and the
Hamiltonian function

H(x , p, t) =
1

2t3
∥p∥2 + t3f (x)

In this case the Hamilton equations are:

ṫ = 1 , ẋ =
p

t3
, ṗ = −t3∇f (x) . ⋄



Time-dependent mechanics

LEH
(ΩQ + dH ∧ dt) = 0 LEH

η = 0

The flow of the evolution vector field Ψs : U ⊂ T ∗Q × R → T ∗Q × R

Ψs(αq, t) = (Ψt,s(αq), t + s), αq ∈ T ∗
qQ,

Therefore from the flow of EH we induce a map

Ψt,s : Ut ⊆ T ∗Q → T ∗Q

where Ut = {αq ∈ T ∗Q | (αq, t) ∈ U}.

Ψ∗
s (ΩQ + dH ∧ dt) = ΩQ + dH ∧ dt, Ψ∗

s (η) = η .



Time-dependent mechanics

Ψs : U ⊂ T ∗Q × R → T ∗Q × R
Theorem: We have that Ψt,s : Ut ⊆ T ∗Q → T ∗Q is a
symplectomorphism, that is, Ψ∗

t,sωQ = ωQ .



Discrete variational methods for time-dependent
Lagrangian systems

Consider Q × Q as a discrete version of TQ and, instead of curves on Q,
the solutions are replaced by sequences of points on Q.

Cd(Q) =
{
xd : {k}Nk=0 → Q

}
for the set of possible sequences, which can be identified with the manifold

Q×
(N+1)
· · · ×Q.

A discrete time-dependent Lagrangian is a family of maps

Lkd : Q × Q → R, k = 0, . . . ,N − 1 .
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Discrete variational methods for time-dependent
Lagrangian systems

Define the discrete action map, on the space of sequences Cd(Q) by

Sd(xd) =
N−1∑
k=0

Lkd(xk , xk+1), xd ∈ Cd(Q) .

If we consider variations of xd with fixed end points x0 and xN and
extremize Sd over x1, . . . , xN−1, we obtain the discrete Euler-Lagrange
equations (DEL for short)

∂xk+1
Sd(xd) = D1L

k+1
d (xk+1, xk+2)+D2L

k
d(xk , xk+1) = 0 k = 0, . . . ,N−2 .

Define a discrete flow Fk,k+1 : TQ → TQ



Discrete variational methods for time-dependent
Lagrangian systems

If Lkd is regular for all k , that is, the matrix

D12L
k
d =

(
∂2Lkd

∂xk∂xk+1

)
is non-singular, the two discrete Legendre transformations associated to Lkd

F+Lkd ,F−Lkd : Q × Q → T ∗Q , k = 1, . . . ,N

by

F+Lkd : (xk , xk+1) 7−→(xk+1,D2L
k
d(xk , xk+1)) ,

F−Lkd : (xk , xk+1) 7−→(xk ,−D1L
k
d(xk , xk+1)) .

are local diffeomorphisms.



Discrete variational methods for time-dependent
Lagrangian systems

We can also define the evolution of the discrete system on the
Hamiltonian side, F̃k,k+1 : T

∗Q → T ∗Q, by any of the formulas

F̃k,k+1 = F+Lkd ◦ (F−Lkd)
−1 = F+Lkd ◦ Fk−1,k ◦ (F+Lk−1

d )−1

= F−Lk+1
d ◦ Fk,k+1 ◦ (F−Lkd)

−1 ,

because of the commutativity of the following diagram:

(xk−1, xk)
Fk−1,k //

F+Lk−1
d &&

(xk , xk+1)
F−Lkd

xx F+Lkd ''

Fk,k+1 // (xk+1, xk+2)
F−Lk+1

d

ww
(xk , pk)

F̃k,k+1

// (xk+1, pk+1)



Discrete variational methods for time-dependent
Lagrangian systems

The discrete Hamiltonian map F̃k,k+1 : (T
∗Q, ωQ) → (T ∗Q, ωQ) is a

symplectic transformation, that is

(F̃k,k+1)
∗ωQ = ωQ .



Discrete variational methods for time-dependent
Lagrangian systems.Examples

The most simple discretization of the discrete Lagrangian is given by
approximating the action using the initial point:

Lk,inid ,h (xk , xk+1) = hL(xk ,
xk+1 − xk

h
, kh)

In the case of the Nesterov Lagrangian L(x , ẋ , t) = t3
(
1
2∥ẋ∥

2 − f (x)
)
the

corresponding first-order discrete Euler-Lagrange equations for the
Nesterov Lagrangian is:

xk+2 − xk =
k3

(1 + k)3
(xk+1 − xk)− h2∇f (xk+1)



Discrete variational methods for time-dependent
Lagrangian systems.Examples

However if we select the approximation using the final point we obtain the
discrete Lagrangian

Lk,endd ,h (xk , xk+1) = hL(xk+1,
xk+1 − xk

h
, (k + 1)h)

and the corresponding first-order discrete Euler-Lagrange equations for the
Nesterov Lagrangian are:

xk+2 − xk+1 =
(k + 1)3

(
xk+1 − xk − h2∇f (xk+1)

)
(k + 2)3



Midpoint discretization

Another typical option is to use for the discretization of the action is to
use the midpoint rule:

Lk,mp
d ,h (xk , xk+1) = hL(

xk + xk+1

2
,
xk+1 − xk

h
, kh +

h

2
)

In the case of the Nesterov Lagrangian the method is second order in h
although the discrete equations are implicit:

0 = − (2k + 3)3
(
2

(
xk+2 − xk+1

h

)
+ h∇f

(
xk+1 + xk+2

2

))
+ (2k + 1)3

(
2

(
xk+1 − xk

h

)
− h∇f

(
xk−1 + xk

2

))



A Störmer–Verlet method for Brergman Lagrangian
systems

L(x , v , t) =
1

2
e−α(t)+γ(t)∥v∥2 − eα(t)+γ(t)+β(t)f (x)

and assuming the ideal scaling conditions by Wibosono et al (2016), that
is,

α(t) = lnp− ln t , β(t) = p ln t + lnC , γ(t) = p ln t

then we can write the Lagrangian as

L(x , v , t) =
1

2p
tp+1∥v∥2 − Cpt2p−1f (x)

If p = 2 and C = 1/4



A Störmer–Verlet method for Brergman Lagrangian
systems

Taking

Lk,SVd ,h (xk , xk+1) =
h

4p

[
(kh)p+1 + ((k + 1)h)p+1

]
∥qk+1 − qk

h
∥2

− h

2
Cp
[
(kh)2p−1f (xk) + ((k + 1)h)2p−1f (xk+1)

]



A Störmer–Verlet method for Brergman Lagrangian
systems

Denoting pk+1/2 =
1
2p

[
(kh)p+1 + ((k + 1)h)p+1

]
(xk+1 − xk)/h, the

previous equations are rewritten in the form

pk+1/2 = pk −
h

2
Cp(kh)2p−1∇f (xk),

xk+1 = xk +
2ph

[(kh)p+1 + ((k + 1)h)p+1]
pk+1/2,

pk+1 = pk+1/2 −
h

2
Cp((k + 1)h)2p−1∇f (xk+1)



Simple Test Function

Rosenbrock function, 1960

f (x , y) = (a− x)2 + b(y − x2)2

Steep well, flat valley

Banana shaped

Global minimum at (a, a2)

f (a, a2) = 0

 https://en.wikipedia.org/wiki/Rosenbrock_function 
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Discrete Lagrange-d’Alembert principle

Now, our intention is to continue looking for numerical approximations to
the Euler-Lagrange equations given by a Bregman Lagrangian but
additionally adding an external force that decreases jointly with the h
parameter. With it we will obtain new algorithms whose behavior
resembles that of the Nesterov method.

Fortunately, discrete mechanics is also adapted to the case of external
forces. To this end, in addition to a time-dependent Lagrangian function
L : TQ × R → R we have an external force given by a fibre preserving
mapping f : TQ × R → T ∗Q given locally by

f (t, x , ẋ) = (x ,F (x , ẋ , t))
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Discrete Lagrange-d’Alembert principle

δ

∫ h

0
L(x(t), ẋ(t), t) dt +

∫ h

0
F (x(t), ẋ(t), t)δx(t) dt = 0 ,

for all δx(t) ∈ Tx(t)Q.

d

dt

(
∂L

∂ẋ i

)
− ∂L

∂x i
= Fi



Discrete Lagrange-d’Alembert principle

To discretize these equations we consider as before a family of Lagrangian
functions Lkd : Q ×Q → R and Discrete Lagrange-d’Alembert principle two
discrete forces (F k

d )
+, (F k

d )
− : Q ×Q → T ∗Q, which are fibre preserving in

the sense that πQ ◦ (F k
d )

∓ = pr∓ where pr−(x , x
′) = x and pr+(x , x

′) = x ′.
Aa discrete version of the Lagrange-d’Alembert principle for the discrete
forced system given by Lkd and F k

d :

0 = δ

N−1∑
k=0

Lkd(xk , xk+1) +
N−1∑
k=0

⟨F k
d (xk , xk+1), (δxk , δxk+1)⟩

= δ

N−1∑
k=0

Lkd(xk , xk+1) +
N−1∑
k=0

[
(F k

d )
−(xk , xk+1)δxk + (F k

d )
+(xk , xk+1)δxk+1

]
for all variations {δqk}Nk=0 vanishing at the endpoints, that is,
δq0 = δqN = 0.



Discrete Lagrange-d’Alembert principle

This is equivalent to the forced discrete Euler-Lagrange equations:

D1L
k+1
d (xk+1, xk+2) + D2L

k
d(xk , xk+1)

+(F k+1
d )−(xk+1, xk+2) + (F k

d )
+(xk , xk+1) = 0



Lemma

Given f : Q → R, consider the SODE

ẍ + ν(t)ẋ + η(t)∇f (x) = ε
[
η(t)∇f (x)

]
, (EL)

where ν, η : R+ → R and ε ∈ R. Then (EL) corresponds to the equation
of motion of the time dependent Lagrangian system

L(x , ẋ , t) = a(t)12∥ẋ∥
2 − b(t)f (x) ,

F (x , ẋ , t) = εa(t)

[
b(t)

a(t)
∇f (x)

]
,

where
a(t) = exp(

∫ t
0 ν(s)) , b(t) = a(t)η(t) .



Theorem (C. M. Campos, DMdD, A Mahillo, JMLR (2022))

Given f : Q → R, consider the time dependent discrete Lagrangian system

Ld(z0, z1, k) = ak
1
2 ∥z1 − z0∥2 − b−k f (z0)− b+k+1f (z1) ,

F−
d (z0, z1, k) =

ak−1

ak
(b−k + b+k )∇f (z0) , and

F+
d (z0, z1, k) = − (b−k + b+k )∇f (z0) .

where {ak}k≥0, {b±k }k≥0, are arbitrary sequences. If ak is never null, then
the free and forced equations of motion for Ld and (Ld ,F

−
d ,F

+
d ) are

yk+1 = xk − ηk∇f (xk) ȳk+1 = x̄k − ηk∇f (x̄k)

xk+1 = yk+1 + µk(xk − xk−1) x̄k+1 = ȳk+1 + µk(ȳk+1 − ȳk)

where
µk+1 =

ak
ak+1

ηk =
b−k + b+k

ak
.

And conversely...



Simple Test Function

Rosenbrock function, 1960

f (x , y) = (a− x)2 + b(y − x2)2

Steep well, flat valley

Banana shaped

Global minimum at (a, a2)

f (a, a2) = 0

The YATF function

g(x , y) = sin
(
1
2x

2 − 1
4y

2 + 3
)
cos (2x + 1− ey )

Yet Another Test Function

 https://en.wikipedia.org/wiki/Rosenbrock_function 
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Thanks a lot!!!
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