

On Neumann-Poincaré operators and self-adjoint transmission problems

Badreddine Benhellal

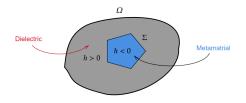
Joint work with Konstantin Pankrashkin (Oldenburg)

Groningen-Oldenburg-Utrecht mathematical physics seminar, Groningen B. Benhellal, K. Pankrashkin: On Neumann-Poincaré operators and self-adjoint transmission problems, submitted (2023), arXiv Preprint https://arxiv.org/abs/2311.12672.

This work has received funding from the Deutsche Forschungsgemeinschaf (DFG, German Research Found) - 491606144.

Motivations

The mathematical theory of electromagnetic negative-index material negative-index metamaterials.



Model problem:

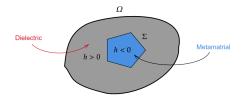
(\mathcal{P}) Find $f \in H^1(\Omega) \setminus \{0\}$ such that: $-\operatorname{div}(h\nabla f) = g$ in Ω and f = 0 on $\partial\Omega$.

where g is a source term in $L^2(\Omega)$.

- (\mathcal{P}) is transmission problem as h changes sign across Σ .
- Are these problems well-posed?
- ▶ If not, why?

Motivations

The mathematical theory of electromagnetic negative-index material negative-index metamaterials.



Model problem:

(\mathcal{P}) Find $f \in H^1(\Omega) \setminus \{0\}$ such that: $-\operatorname{div}(h\nabla f) = g$ in Ω and f = 0 on $\partial\Omega$.

where g is a source term in $L^2(\Omega)$.

- (\mathcal{P}) is transmission problem as h changes sign across Σ .
- Are these problems well-posed?
- If not, why?

Difficulty

Assume that h > 0 in Ω , then

$$a(u,v) = \int_{\Omega} h |\nabla f|^2 \ge C \int_{\Omega} |f|^2$$

which means that the form $a(u, v) = \int_{\Omega} h \nabla u \nabla v$ is coercive in $H_0^1(\Omega)$. Lax-Milgram theorem $\implies (\mathcal{P})$ is well-posed.

However, if h is sign-changing then a is not coercive.

it is natural to look for self-adjoint realizations of

 $f\mapsto -{
m div}(h
abla f), \quad f=0 \ {
m on} \ \partial\Omega,$

which may provide a rigorous reformulation of the above problem.

Difficulty

Assume that h > 0 in Ω , then

$$a(u,v) = \int_{\Omega} h |\nabla f|^2 \ge C \int_{\Omega} |f|^2$$

which means that the form $a(u, v) = \int_{\Omega} h \nabla u \nabla v$ is coercive in $H_0^1(\Omega)$. Lax-Milgram theorem $\implies (\mathcal{P})$ is well-posed.

However, if h is sign-changing then a is not coercive.

it is natural to look for self-adjoint realizations of

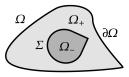
$$f \mapsto -\operatorname{div}(h\nabla f), \quad f = 0 \text{ on } \partial\Omega,$$

which may provide a rigorous reformulation of the above problem.

Indefinite Laplacians

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with boundary $\partial \Omega$. Let $\Omega_- \subset \Omega$ be a non-empty open subset with boundary Σ such that $\overline{\Omega_-} \subset \Omega$, and set

$$\Omega_+ = \Omega \setminus \overline{\Omega_-}, \qquad \Sigma = \partial \Omega_-,$$



Let $\mu \in \mathbb{R} \setminus \{0\}$ and let

$$h: \ \Omega \ni x \mapsto \begin{cases} 1, & x \in \Omega_+, \\ \mu, & x \in \Omega_-. \end{cases}$$

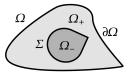
Consider in $L^2(\Omega)$ the operator L formally acting as

 $Lu = -\operatorname{div}(h\nabla u), \quad \text{for } u \in \operatorname{dom}(L) = \{u \in H^1_0(\Omega) : \operatorname{div}(h\nabla u) \in L^2(\Omega)\}$

Indefinite Laplacians

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with boundary $\partial \Omega$. Let $\Omega_- \subset \Omega$ be a non-empty open subset with boundary Σ such that $\overline{\Omega_-} \subset \Omega$, and set

$$\Omega_+ = \Omega \setminus \overline{\Omega_-}, \qquad \Sigma = \partial \Omega_-,$$



Let $\mu \in \mathbb{R} \setminus \{0\}$ and let

$$h: \ \Omega \ni x \mapsto \begin{cases} 1, & x \in \Omega_+, \\ \mu, & x \in \Omega_-. \end{cases}$$

Consider in $L^2(\Omega)$ the operator L formally acting as

 $Lu = -\operatorname{div}(h\nabla u), \quad \text{for } u \in \operatorname{dom}(L) = \{ u \in H^1_0(\Omega) : \operatorname{div}(h\nabla u) \in L^2(\Omega) \}.$

Several people were involved in the study of this problem:

Behrndt, Bonnet-Ben Dhia, Cacciapuoti, Costabel, Chesnel, Dauge, Grieser, Hussein, Kostrykin, Krejčiřik, Pankrashkin, Posilicano, Ramdani, Stephan, Texier... ,

Theorem

Assume that Ω_+ is C^2 -smooth. If $\mu \neq -1$ then A is self-adjoint with compact resolvent in $L^2(\Omega)$.

 A.-S. Bonnet-Ben Dhia, M. Dauge, K. Ramdani: Analyse spectrale et singularités d'un problème de transmission non-coercive. C. R. Acad. Sci. Paris 328 (1999) 717–720.

Remark: In fact one has dom $L \subset H^2(\Omega \setminus \Sigma)$.

Theorem

Assume that Σ is C^2 -smooth except a single point a (corner) with an angle $\omega \neq \pi$. Then L is self-adjoint if and only if

$$\mu \notin I = \left[-\frac{1}{b(\omega)}, -b(\omega) \right] \quad \text{with} \quad b(\omega) := \max\left\{ \frac{\omega}{2\pi - \omega}, \frac{2\pi - \omega}{\omega} \right\}.$$

Several people were involved in the study of this problem:

Behrndt, Bonnet-Ben Dhia, Cacciapuoti, Costabel, Chesnel, Dauge, Grieser, Hussein, Kostrykin, Krejčiřik, Pankrashkin, Posilicano, Ramdani, Stephan, Texier... ,

Theorem

Assume that Ω_+ is C^2 -smooth. If $\mu \neq -1$ then A is self-adjoint with compact resolvent in $L^2(\Omega)$.

 A.-S. Bonnet-Ben Dhia, M. Dauge, K. Ramdani: Analyse spectrale et singularités d'un problème de transmission non-coercive. C. R. Acad. Sci. Paris 328 (1999) 717–720.

Remark: In fact one has dom $L \subset H^2(\Omega \setminus \Sigma)$.

Theorem

Assume that Σ is C^2 -smooth except a single point a (corner) with an angle $\omega \neq \pi$. Then L is self-adjoint if and only if

$$\mu \notin I = \left[-\frac{1}{b(\omega)}, -b(\omega) \right] \quad \text{with} \quad b(\omega) := \max\left\{ \frac{\omega}{2\pi - \omega}, \frac{2\pi - \omega}{\omega} \right\}.$$

Several people were involved in the study of this problem:

Behrndt, Bonnet-Ben Dhia, Cacciapuoti, Costabel, Chesnel, Dauge, Grieser, Hussein, Kostrykin, Krejčiřik, Pankrashkin, Posilicano, Ramdani, Stephan, Texier... ,

Theorem

Assume that Ω_+ is C^2 -smooth. If $\mu \neq -1$ then A is self-adjoint with compact resolvent in $L^2(\Omega)$.

 A.-S. Bonnet-Ben Dhia, M. Dauge, K. Ramdani: Analyse spectrale et singularités d'un problème de transmission non-coercive. C. R. Acad. Sci. Paris 328 (1999) 717–720.

Remark: In fact one has dom $L \subset H^2(\Omega \setminus \Sigma)$.

Theorem

Assume that Σ is C^2 -smooth except a single point a (corner) with an angle $\omega \neq \pi$. Then L is self-adjoint if and only if

$$\mu \notin I = \Big[-\frac{1}{b(\omega)}, -b(\omega) \Big] \quad \text{with} \quad b(\omega) := \max \big\{ \frac{\omega}{2\pi - \omega}, \frac{2\pi - \omega}{\omega} \big\}$$

Several people were involved in the study of this problem:

Behrndt, Bonnet-Ben Dhia, Cacciapuoti, Costabel, Chesnel, Dauge, Grieser, Hussein, Kostrykin, Krejčiřik, Pankrashkin, Posilicano, Ramdani, Stephan, Texier... ,

Theorem

Assume that Ω_+ is C^2 -smooth. If $\mu \neq -1$ then A is self-adjoint with compact resolvent in $L^2(\Omega)$.

 A.-S. Bonnet-Ben Dhia, M. Dauge, K. Ramdani: Analyse spectrale et singularités d'un problème de transmission non-coercive. C. R. Acad. Sci. Paris 328 (1999) 717–720.

Remark: In fact one has dom $L \subset H^2(\Omega \setminus \Sigma)$.

Theorem

Assume that Σ is C^2 -smooth except a single point a (corner) with an angle $\omega \neq \pi$. Then L is self-adjoint if and only if

$$\mu \notin I = \left[-\frac{1}{b(\omega)}, -b(\omega) \right] \quad \text{with} \quad b(\omega) := \max\left\{ \frac{\omega}{2\pi - \omega}, \frac{2\pi - \omega}{\omega} \right\}.$$

The case of C^{∞} -smooth Σ

Now assume that Ω_+ is C^{∞} -smooth.

Theorem

Assume that $\mu = -1$. Then, L is self-adjoint in $L^2(\Omega)$ and the following hold:

• If
$$n = 2$$
, then $\sigma_{ess}(\overline{L}) = 0$

- if $n \ge 3$ then
 - If the principal curvatures of Σ are either all strictly positive or all strictly negative (in particular, if Σ is strictly convex), then dom $\overline{L} \subset H^1(\Omega \setminus \Sigma)$. In particular, \overline{L} has **compact resolvent**.
 - If Σ contains a **flat part**, then $0 \subset \sigma_{ess}(\overline{L})$.
- [1] C. Cacciapuoti, K. Pankrashkin, A. Posilicano: Self-adjoint indefinite Laplacians. J. Anal. Math. 139 (2018) 155-177.

Some analogies with the "Dirac operator with shell interactions", i.e. $D + \lambda \delta_{\Sigma}$ with $\lambda \in \mathbb{R}$ (interaction concentrated in a small vicinity of the hypersurface Σ). If $\lambda = \pm 2$: no usual H^1 -Sobolev regurality.

The case of C^{∞} -smooth Σ

Now assume that Ω_+ is C^{∞} -smooth.

Theorem

Assume that $\mu = -1$. Then, L is self-adjoint in $L^2(\Omega)$ and the following hold:

• If
$$n = 2$$
, then $\sigma_{ess}(\overline{L}) = 0$

- if $n \ge 3$ then
 - If the principal curvatures of Σ are either all strictly positive or all strictly negative (in particular, if Σ is strictly convex), then dom $\overline{L} \subset H^1(\Omega \setminus \Sigma)$. In particular, \overline{L} has **compact resolvent**.
 - If Σ contains a flat part, then $0 \subset \sigma_{ess}(\overline{L})$.
- [1] C. Cacciapuoti, K. Pankrashkin, A. Posilicano: Self-adjoint indefinite Laplacians. J. Anal. Math. 139 (2018) 155-177.
- Some analogies with the "Dirac operator with shell interactions", i.e. $D + \lambda \delta_{\Sigma}$ with $\lambda \in \mathbb{R}$ (interaction concentrated in a small vicinity of the hypersurface Σ). If $\lambda = \pm 2$: no usual H^1 -Sobolev regurality.

Dirichet Laplacian on Lipschitz domains

Let $n \geq 2$ and $U \subset \mathbb{R}^n$ be a bounded Lipschitz domain and denote ν the outer unit normal on ∂U .

Denote by H^s the usual Sobolev spaces of order $s \in \mathbb{R}$, and set

$$H^s_{\Delta}(U) := \left\{ f \in H^s(U) : \Delta f \in L^2(U) \right\},\$$

which will be equipped with the norm $||f||^2_{H^s_{\Delta}(U)} := ||f||^2_{H^s(U)} + ||\Delta f||^2_{L^2(U)}.$ For any $s \in [1/2, 3/2]$

- ▶ The Dirichlet traces $\gamma_D^{\partial U}: H^s_{\Delta}(U) \to H^{s-\frac{1}{2}}(\partial U)$, and
- The Neumann traces $\gamma_N^{\partial U}: H^s_\Delta(U) \to H^{s-\frac{3}{2}}(\partial U)$, are well-defined and bounded.

The Dirichlet Laplacian $-\Delta_U$ associated with U is the linear operator in $L^2(U)$ defined by

$$\operatorname{dom}(-\Delta_U) := \big\{ f \in H^{\frac{3}{2}}_{\Delta}(U) : \ \gamma_D^{\partial U} f = 0 \big\}, \quad -\Delta_U : \ f \mapsto -\Delta f.$$

It is well-known that $-\Delta_U$ is a self-adjoint operator with compact resolvent.

Dirichet Laplacian on Lipschitz domains

Let $n \geq 2$ and $U \subset \mathbb{R}^n$ be a bounded Lipschitz domain and denote ν the outer unit normal on ∂U .

Denote by H^s the usual Sobolev spaces of order $s \in \mathbb{R}$, and set

$$H^s_{\Delta}(U) := \left\{ f \in H^s(U) : \Delta f \in L^2(U) \right\},\$$

which will be equipped with the norm $||f||^2_{H^s_{\Delta}(U)} := ||f||^2_{H^s(U)} + ||\Delta f||^2_{L^2(U)}$. For any $s \in [1/2, 3/2]$

- The Dirichlet traces $\gamma_D^{\partial U}: H^s_{\Delta}(U) \to H^{s-\frac{1}{2}}(\partial U)$, and
- ▶ The Neumann traces $\gamma_N^{\partial U}: H^s_{\Delta}(U) \to H^{s-\frac{3}{2}}(\partial U)$, are well-defined and bounded.

The Dirichlet Laplacian $-\Delta_U$ associated with U is the linear operator in $L^2(U)$ defined by

$$\operatorname{dom}(-\Delta_U) := \left\{ f \in H_{\Delta}^{\frac{3}{2}}(U) : \ \gamma_D^{\partial U} f = 0 \right\}, \quad -\Delta_U : \ f \mapsto -\Delta f.$$

It is well-known that $-\Delta_U$ is a self-adjoint operator with compact resolvent.

General Lipschitz Σ

We use the idenfitication $L^2(\Omega) \simeq L^2(\Omega_+) \oplus L^2(\Omega_-)$, i.e., $u = (u_+, u_-)$ where u_{\pm} are the restrictions on Ω_{\pm} .

For $s \in [1, 3/2]$ we set

$H^s_{\Delta}(\Omega_{\pm}) := \left\{ f \in H^s(\Omega_{\pm}) : \Delta f_{\pm} \in L^2(\Omega_{\pm}) \right\},\$

and we consider the following linear operator $A_{(s)}$ in $L^2(\Omega)$:

$$\begin{split} \operatorname{dom} A &= \big\{ f = (f_+, f_-) \in H^s_\Delta(\Omega_+) \oplus H^s_\Delta(\Omega_-) : \gamma^\partial_D f_+ = 0 \text{ on } \partial\Omega, \\ \gamma^-_D f_- &= \gamma^+_D f_+ \text{ on } \Sigma, \, \mu \gamma^-_N f_- + \gamma^+_N f_+ = 0 \text{ on } \Sigma \big\}, \\ A : \quad (f_+, f_-) \mapsto (-\Delta f_+, -\mu \Delta f_-). \end{split}$$

For a bounded linear operator T, we let

 $\sigma_{ess}^{0}(T) := \{ z \in \mathbb{C} : C - z \text{ is not a zero index Fredholm operator} \},\$ $r_{ess}(T) := \sup \{ |\lambda| : \lambda \in \sigma_{ess}(T) \}.$

General Lipschitz Σ

We use the idenfitication $L^2(\Omega) \simeq L^2(\Omega_+) \oplus L^2(\Omega_-)$, i.e., $u = (u_+, u_-)$ where u_{\pm} are the restrictions on Ω_{\pm} .

For $s \in [1, 3/2]$ we set

 $H^s_{\Delta}(\Omega_{\pm}) := \left\{ f \in H^s(\Omega_{\pm}) : \Delta f_{\pm} \in L^2(\Omega_{\pm}) \right\},\$

and we consider the following linear operator $A_{(s)}$ in $L^2(\Omega)$:

$$\begin{split} \operatorname{dom} A &= \big\{ f = (f_+, f_-) \in H^s_\Delta(\Omega_+) \oplus H^s_\Delta(\Omega_-) : \gamma_D^\partial f_+ = 0 \text{ on } \partial\Omega, \\ \gamma_D^- f_- &= \gamma_D^+ f_+ \text{ on } \Sigma, \ \mu \gamma_N^- f_- + \gamma_N^+ f_+ = 0 \text{ on } \Sigma \big\}, \\ A : \quad (f_+, f_-) \mapsto (-\Delta f_+, -\mu \Delta f_-). \end{split}$$

For a bounded linear operator T, we let

 $\sigma_{ess}^{0}(T) := \{ z \in \mathbb{C} : C - z \text{ is not a zero index Fredholm operator} \},\$ $r_{ess}(T) := \sup \{ |\lambda| : \lambda \in \sigma_{ess}(T) \}.$

General Lipschitz Σ

We use the idenfitication $L^2(\Omega) \simeq L^2(\Omega_+) \oplus L^2(\Omega_-)$, i.e., $u = (u_+, u_-)$ where u_{\pm} are the restrictions on Ω_{\pm} .

For $s \in [1, 3/2]$ we set

 $H^s_{\Delta}(\Omega_{\pm}) := \left\{ f \in H^s(\Omega_{\pm}) : \Delta f_{\pm} \in L^2(\Omega_{\pm}) \right\},\$

and we consider the following linear operator $A_{(s)}$ in $L^2(\Omega)$:

$$\begin{split} \operatorname{dom} A &= \big\{ f = (f_+, f_-) \in H^s_\Delta(\Omega_+) \oplus H^s_\Delta(\Omega_-) : \gamma_D^\partial f_+ = 0 \text{ on } \partial\Omega, \\ \gamma_D^- f_- &= \gamma_D^+ f_+ \text{ on } \Sigma, \, \mu \gamma_N^- f_- + \gamma_N^+ f_+ = 0 \text{ on } \Sigma \big\}, \\ A : \quad (f_+, f_-) \mapsto (-\Delta f_+, -\mu \Delta f_-). \end{split}$$

For a bounded linear operator T, we let

$$\begin{split} \sigma_{\mathrm{ess}}^0(T) &:= \big\{ z \in \mathbb{C} : \ C - z \text{ is not a zero index Fredholm operator} \big\},\\ r_{\mathrm{ess}}(T) &:= \sup \big\{ |\lambda| : \ \lambda \in \sigma_{\mathrm{ess}}(T) \big\}. \end{split}$$

 Φ the fundamental solution of Δ in \mathbb{R}^n :

$$\Phi: \quad \mathbb{R}^n \setminus \{0\} \ni x \mapsto \begin{cases} \frac{1}{2\pi} \log |x|, & \text{for } n = 2, \\ \\ \frac{1}{\sigma_n (n-2) |x|^{n-2}}, & \text{for } n \ge 3, \end{cases}$$

The adjoint of the *Neumann-Poincaré* operator $K_{\Sigma}^* : L^2(\Sigma) \to L^2(\Sigma)$:

$$K_{\Sigma}^{*}f(x) = \text{p.v.} \int_{\Sigma} \frac{\langle \nu(x), x - y \rangle}{\sigma_{n}|x - y|^{n}} f(y) \mathrm{d}s(y),$$

It is known that $K_{\Sigma}^*: H^s(\Sigma) \to H^s(\Sigma)$ is bounded for any $s \in [-1/2, 0]$.

Theorem (B-Pankrashkin, 23')

Assume that Σ is Lipschitz and fix $s \in [1,3/2]$. let $\mu \in \mathbb{R} \setminus \{0,1\}$ be such that

$$\frac{\mu+1}{2(\mu-1)} \notin \sigma_{\operatorname{ess}}^0(K_{\Sigma}^*), \quad K_{\Sigma}^*: H^{s-\frac{3}{2}}(\Sigma) \to H^{s-\frac{3}{2}}(\Sigma).$$
(TC)

Then, $A_{(s)}$ is **self-adjoint** with **compact resolvent**. The condition (TC) is satisfied, in particular, if

$$\left|\frac{\mu+1}{2(\mu-1)}\right| > r_{\mathrm{ess}}(K_{\Sigma}^*).$$

 Φ the fundamental solution of Δ in \mathbb{R}^n :

$$\Phi: \quad \mathbb{R}^n \setminus \{0\} \ni x \mapsto \begin{cases} \frac{1}{2\pi} \log |x|, & \text{for } n = 2, \\ \\ \frac{1}{\sigma_n (n-2) |x|^{n-2}}, & \text{for } n \ge 3, \end{cases}$$

The adjoint of the *Neumann-Poincaré* operator $K_{\Sigma}^* : L^2(\Sigma) \to L^2(\Sigma)$:

$$K_{\Sigma}^{*}f(x) = \text{p.v.} \int_{\Sigma} \frac{\left\langle \nu(x), x - y \right\rangle}{\sigma_{n} |x - y|^{n}} f(y) \mathrm{d}s(y),$$

It is known that $K_{\Sigma}^*: H^s(\Sigma) \to H^s(\Sigma)$ is bounded for any $s \in [-1/2, 0]$.

Theorem (B-Pankrashkin, 23')

Assume that Σ is Lipschitz and fix $s \in [1, 3/2]$. let $\mu \in \mathbb{R} \setminus \{0, 1\}$ be such that

$$\frac{\mu+1}{2(\mu-1)} \notin \sigma_{\rm ess}^0(K_{\Sigma}^*), \quad K_{\Sigma}^*: H^{s-\frac{3}{2}}(\Sigma) \to H^{s-\frac{3}{2}}(\Sigma).$$
(TC)

Then, $A_{(s)}$ is **self-adjoint** with **compact resolvent**. The condition (TC) is satisfied, in particular; if

$$\left|\frac{\mu+1}{2(\mu-1)}\right| > r_{\mathrm{ess}}(K_{\Sigma}^*).$$

Definition

Denote by $VMO(\Sigma)$ the space of functions of vanishing means oscillation on Σ .

Note that bounded Lipschitz domains with normals in VMO are those domains "without corners".

Theorem (B-Pankrashkin, 23')

Let Σ be such that $\nu \in \text{VMO}(\Sigma)$, which is satisfied, in particular for C^1 -smooth Σ . Then the operator A_2^3 is self-adjoint for any $\mu \in \mathbb{R} \setminus \{-1, 0\}$.

• If $\nu \in \text{VMO}(\Sigma)$ then K_{Σ}^* is compact.

Theorem (B-Pankrashkin, 23')

Let n = 2 and Σ be a curvilinear polygon with C^1 -smooth edges and with N interior angles $\omega_1, \ldots, \omega_N \in (0, 2\pi) \setminus \{0\}$. Let $\omega \in (0, \pi)$ be the sharpest angle, i.e.

$$\frac{|\pi-\omega|}{2} = \max_k \frac{|\pi-\omega_k|}{2},$$

then the operator $A_{rac{3}{2}}$ is self-adjoint for all $\mu
eq 0$ with

$$\mu \notin \left[-\frac{1}{a(\omega)}, -a(\omega) \right]$$
 for $a(\omega) := \tan^2 \frac{\omega}{4} \equiv \frac{1 - \cos \frac{\omega}{2}}{1 + \cos \frac{\omega}{2}}$

Definition

Denote by $VMO(\Sigma)$ the space of functions of vanishing means oscillation on Σ .

Note that bounded Lipschitz domains with normals in VMO are those domains "without corners".

Theorem (B-Pankrashkin, 23')

Let Σ be such that $\nu \in \text{VMO}(\Sigma)$, which is satisfied, in particular for C^1 -smooth Σ . Then the operator A_2^3 is self-adjoint for any $\mu \in \mathbb{R} \setminus \{-1, 0\}$.

• If $\nu \in \text{VMO}(\Sigma)$ then K_{Σ}^* is compact.

Theorem (B-Pankrashkin, 23')

Let n = 2 and Σ be a curvilinear polygon with C^1 -smooth edges and with N interior angles $\omega_1, \ldots, \omega_N \in (0, 2\pi) \setminus \{0\}$. Let $\omega \in (0, \pi)$ be the sharpest angle, i.e.

$$\frac{|\pi-\omega|}{2} = \max_k \frac{|\pi-\omega_k|}{2},$$

then the operator $A_{\frac{3}{2}}$ is self-adjoint for all $\mu \neq 0$ with

$$\mu \notin \left[-\frac{1}{a(\omega)}, -a(\omega) \right]$$
 for $a(\omega) := \tan^2 \frac{\omega}{4} \equiv \frac{1 - \cos \frac{\omega}{2}}{1 + \cos \frac{\omega}{2}}$

Theorem (B-Pankrashkin, 23')

Let n = 2 and Σ be a curvilinear polygon with C^1 -smooth edges and with N interior angles $\omega_1, \ldots, \omega_N \in (0, 2\pi) \setminus \{0\}$. If

$$\mu \notin I = \left[-\frac{1}{b(\omega)}, -b(\omega) \right] \quad \text{with} \quad b(\omega) := \max \left\{ \frac{\omega}{2\pi - \omega}, \frac{2\pi - \omega}{\omega} \right\}.$$

then the operator A_1 is self-adjoint.

Main ideas (1)

Let $-\Delta_{\pm}$ be the Dirichlet Laplacian in $L^2(\Omega_{\pm})$ and denote

 $B := (-\Delta_+) \oplus (-\mu\Delta_-).$

For $z \in \mathbb{C} \setminus \mathbb{R}$, we let $P_z : H^1(\Sigma) \to H^{3/2}_{\Delta}(\Omega \setminus \Sigma)$ be the Poisson operator:

$$\begin{split} (-\Delta-z)P\varphi &= 0 \text{ in } \Omega_+, \qquad (-\mu\Delta-z)P\varphi = 0 \text{ in } \Omega_-, \\ \gamma^\partial_D(P\varphi)_+ &= 0, \qquad \gamma^+_D(P\varphi)_+ = \varphi = \gamma^-_D(P\varphi)_-. \end{split}$$

and denote by N_z^{\pm} the Dirichlet-to-Neumann map associated with $(-\Delta - z)$ in Ω_{\pm} . Consider the operators Θ and M_z in $L^2(\Sigma)$,

dom $\Theta = \text{dom}M_z = H^1(\Sigma), \quad \Theta = N_0^+ + \mu N_0^-, \quad M_z = (N_0^+ - N_z^+) + \mu (N_0^- - N_{\frac{z}{\mu}}^-).$

The main ingredient to prove the above results:

Theorem

(a) For any $z \in \mathbb{C} \setminus \sigma(B)$ one has the equality $\ker(A - z) = P_z (\ker(\Theta - M_z))$. In particular, $\Theta - M_z$ is injective for all $z \in \mathbb{C} \setminus \mathbb{R}$, as the operator A is symmetric. (b) Let $z \in \mathbb{C} \setminus \sigma(B)$ such that $\Theta - M_z$ is injective and let $f \in L^2(\Omega)$ such that $P_z^z f \in (\Theta - M_z)$. Then $f \in (A - z)$ and

 $(A-z)^{-1}f = (B-z)^{-1}f + P_z(\Theta - M_z)^{-1}P_{\bar{z}}^*f.$

Main ideas (1)

Let $-\Delta_{\pm}$ be the Dirichlet Laplacian in $L^2(\Omega_{\pm})$ and denote

 $B := (-\Delta_+) \oplus (-\mu\Delta_-).$

For $z \in \mathbb{C} \setminus \mathbb{R}$, we let $P_z : H^1(\Sigma) \to H^{3/2}_{\Delta}(\Omega \setminus \Sigma)$ be the Poisson operator:

$$\begin{split} (-\Delta-z)P\varphi &= 0 \text{ in } \Omega_+, \qquad (-\mu\Delta-z)P\varphi = 0 \text{ in } \Omega_-, \\ \gamma^\partial_D(P\varphi)_+ &= 0, \qquad \gamma^+_D(P\varphi)_+ = \varphi = \gamma^-_D(P\varphi)_-. \end{split}$$

and denote by N_z^{\pm} the Dirichlet-to-Neumann map associated with $(-\Delta - z)$ in Ω_{\pm} . Consider the operators Θ and M_z in $L^2(\Sigma)$,

dom $\Theta = \text{dom}M_z = H^1(\Sigma), \quad \Theta = N_0^+ + \mu N_0^-, \quad M_z = (N_0^+ - N_z^+) + \mu (N_0^- - N_{\frac{z}{\mu}}^-).$

The main ingredient to prove the above results:

Theorem

(a) For any $z \in \mathbb{C} \setminus \sigma(B)$ one has the equality $\ker(A - z) = P_z \left(\ker(\Theta - M_z) \right)$. In particular, $\Theta - M_z$ is injective for all $z \in \mathbb{C} \setminus \mathbb{R}$, as the operator A is symmetric. (b) Let $z \in \mathbb{C} \setminus \sigma(B)$ such that $\Theta - M_z$ is injective and let $f \in L^2(\Omega)$ such that $P_z^* f \in (\Theta - M_z)$. Then $f \in (A - z)$ and

 $(A-z)^{-1}f = (B-z)^{-1}f + P_z(\Theta - M_z)^{-1}P_{\bar{z}}^*f.$

Main ideas (2)

Theorem Let $\mu \in \mathbb{R} \setminus \{0, 1\}$ such that the operator

$$K_{\Sigma}^* - \frac{\mu + 1}{2(\mu - 1)} : L^2(\Sigma) \to L^2(\Sigma)$$

is Fredholm of index m, and let $z \in \mathbb{C} \setminus \mathbb{R}$. Then $(\Theta - M_z)$ is closed with $\dim(\Theta - M_z)^{\perp} = m$.

So far we have no self-adjointness condition for the interesting case $\mu < 0$ and Σ with corners. If for a given Σ one can prove that

$$r := r_{ess}(K_{\Sigma}^*) < \frac{1}{2},$$

then for $\mu \notin \{0,1\}$ there holds

$$\Big|\frac{\mu+1}{2(\mu-1)}\Big|>r \text{ if and only if } \mu\notin I_r:=\Big[-\frac{1+2r}{1-2r},-\frac{1-2r}{1+2r}\Big],$$

i.e. the self-adjointness of $A_{(s)}$ is also guaranteed for all negative μ outside the "critical interval" I_r . At the same time, the inequalities

$$r(K_{\Sigma}^{*}) < \frac{1}{2}, \quad r_{ess}(K_{\Sigma}^{*}) < \frac{1}{2}$$

represent central conjectures in the theory of *Neumann-Poincaré* operators (C. Kenig, 94'), which are still unsolved in the general form.

Main ideas (2)

Theorem Let $\mu \in \mathbb{R} \setminus \{0, 1\}$ such that the operator

$$K_{\Sigma}^* - \frac{\mu + 1}{2(\mu - 1)} : L^2(\Sigma) \to L^2(\Sigma)$$

is Fredholm of index m, and let $z \in \mathbb{C} \setminus \mathbb{R}$. Then $(\Theta - M_z)$ is closed with $\dim(\Theta - M_z)^{\perp} = m$.

So far we have no self-adjointness condition for the interesting case $\mu < 0$ and Σ with corners. If for a given Σ one can prove that

$$r := r_{ess}(K_{\Sigma}^*) < \frac{1}{2},$$

then for $\mu \notin \{0,1\}$ there holds

$$\Big|\frac{\mu+1}{2(\mu-1)}\Big|>r \text{ if and only if } \mu\notin I_r:=\Big[-\frac{1+2r}{1-2r},-\frac{1-2r}{1+2r}\Big],$$

i.e. the self-adjointness of $A_{(s)}$ is also guaranteed for all negative μ outside the "critical interval" I_r . At the same time, the inequalities

$$r(K_{\Sigma}^{*}) < \frac{1}{2}, \quad r_{ess}(K_{\Sigma}^{*}) < \frac{1}{2}$$

represent central conjectures in the theory of *Neumann-Poincaré* operators (C. Kenig, 94'), which are still unsolved in the general form.

Conclusions and work in progress

Lipschitz Σ : a better understanding of the *Fredholm character* of K_{Σ}^* in different functional spaces and its link to the spectral properties of $A_{(s)}$.

- ► If $K_{\Sigma}^* \frac{\mu+1}{2(\mu-1)}$ is Fredholm of index *m*, then *A* is a closed symmetric operator with deficiency indices (m, m)?
- Essential spectrum of K_{Σ}^* in $H^s(\Sigma)$?

Smooth Σ :

- Assume that $\mu = -1$ and n = 2. Describe the accumulation of the eigenvalues near 0. In particular, under which conditions do the eigenvalue accumulate to zero from above/from below only?
- Assume that $\mu = -1$ and $n \ge 3$. Are there Ω_{\pm} such that the essential spectrum of *A* is strictly larger than $\{0\}$? Can the essential spectrum contain an interval or cover the whole real axis?
- B. Benhellal, K. Pankrashkin: Curvature contribution to the essential spectrum of Dirac operators with critical shell interactions. Pure Appl. Anal. (in press).

Conclusions and work in progress

Lipschitz Σ : a better understanding of the *Fredholm character* of K_{Σ}^* in different functional spaces and its link to the spectral properties of $A_{(s)}$.

- ► If $K_{\Sigma}^* \frac{\mu+1}{2(\mu-1)}$ is Fredholm of index *m*, then *A* is a closed symmetric operator with deficiency indices (m, m)?
- Essential spectrum of K_{Σ}^* in $H^s(\Sigma)$?

Smooth Σ :

- Assume that $\mu = -1$ and n = 2. Describe the accumulation of the eigenvalues near 0. In particular, under which conditions do the eigenvalue accumulate to zero from above/from below only?
- Assume that $\mu = -1$ and $n \ge 3$. Are there Ω_{\pm} such that the essential spectrum of *A* is strictly larger than $\{0\}$? Can the essential spectrum contain an interval or cover the whole real axis?
- B. Benhellal, K. Pankrashkin: Curvature contribution to the essential spectrum of Dirac operators with critical shell interactions. Pure Appl. Anal. (in press).